
A novel Make-Up Gain stage for the

software-based Moog 4-pole audio filter

Jaypat Piamjariyakul

May 2021

Final year project thesis submitted in support of the degree of Master of

Engineering in Electrical and Electronic Engineering

Department of Electrical & Electronic Engineering

University of Bristol

i

Declaration and Disclaimer

Unless otherwise acknowledged, the content of this thesis is the original work of the author.

None of the work in this thesis has been submitted by the author in support of an application

for another degree or qualification at this or any other university or institute of learning.

The views in this document are those of the author and do not in any way represent those of

the University.

The author confirms that the printed copy and electronic version of this thesis are identical.

Signed: Jaypat Piamjariyakul

Dated: 4th May 2021

ii

Abstract

The objective of this project is to develop a novel method of applying the ’make-up’ gain to a

filtered signal such that its loudness would be restored to that of the original unfiltered signal,

with particular focus on the output of the Moog voltage-controlled low-pass filter. Many previous

works have attempted to capture, with varying successes, the analogue nonlinearities of the filter

which gives it the distinctive ’warm’ distorted output. This makes developing the gain stage

difficult, as the nonlinear properties of the filter made analytical derivations of the required

amplification impossible. As such, a numerical approach in the time domain, as opposed to the

commonly-discussed frequency domain, was used instead.

Loudness, as a psychoacoustic concept, is a subjective term describing how a set of audio signals

is perceived by the human auditory system. Using the ITU-R BS.1770 loudness standard, an

algorithm based on the moving average filter was developed to evaluate the loudness of a signal in

real-time with low memory requirements and fast speed, with a preceding ’K-weighting’ scheme

that simulates how the human auditory system perceives different frequencies in the input and

filtered signals.

The make-up gain algorithm was then implemented in MATLAB to evaluate the loudness of the

input and filtered signals to obtain the set of gain values necessary to increase the loudness of

the filtered signal to that of the input’s. The developed method demonstrated that the signal

loudness was successfully restored, however the algorithm had issues with determining loudness

of brief signal pulses instead of long-running signals, where the algorithm has little issues with

evaluating loudnesses of the latter. The finalised system was implemented as an audio plugin

that demonstrates its real-time capabilities.

Contents

Acronyms vi

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 1

1.3 Objectives and specifications . 2

1.4 Software overview . 3

1.5 Limitations . 3

1.6 Contributions . 3

2 Literature review 4

2.1 Quantifying loudness . 4

2.1.1 Signal energy/power and root mean square 4

2.1.2 Stevens’s power law . 5

2.2 Frequency weighting techniques . 6

2.2.1 Fletcher-Munson Equal Loudness Curves 6

2.2.2 A-weighting . 7

2.2.3 Measuring the equivalent continuous sound level 8

2.2.4 Soulodre’s Revised low-frequency B-curve weighting 8

2.2.5 K-weighting (ITU-R BS.1770) . 9

2.2.6 Other techniques and developments . 11

2.3 Calculating second-order filter coefficients . 12

2.4 Automatic gain control . 13

2.5 Analysis of the analogue Moog transistor ladder VCF 14

2.5.1 Huovilainen’s analysis of the differential pair 16

2.5.2 Differential equation for a single stage . 16

iii

CONTENTS iv

2.6 Implementation of the discrete-time VCF . 17

2.6.1 Stilson and Smith’s linear VCF analysis 17

2.6.2 Stinchcombe’s pole-zero analysis of the linear VCF 19

2.6.3 Huovilainen’s implementation of the nonlinear VCF 19

2.6.4 Daly’s dimensionless difference equation variants 21

2.7 Virtual Studio Technology (VST) plugins . 22

3 Design and implementation 23

3.1 Design parameters and assumptions . 23

3.1.1 Choosing the programming language . 25

3.2 Signal energy as a loudness metric . 25

3.2.1 Psychoacoustic compensation with Stevens’s power law 26

3.2.2 Designing a moving window buffer . 27

3.3 Generating gain with RMS values . 28

3.3.1 Implementing the RMS algorithm as a simple moving average filter 29

3.4 Obtaining loudness with the exponential moving average 30

3.5 Generating gain with SMA/EMA filters . 32

3.6 Calculating K-filter coefficients at 44.1 kHz . 33

3.7 Constructing the K-filter . 34

3.7.1 Implementing the RLB filter . 34

3.7.2 Implementing the pre-K weighting filter 34

3.7.3 Applying K-weighting to gain generation 35

3.8 Implementing the nonlinear Moog VCF . 35

3.9 Combining the VCF and make-up gain stages together 38

3.10 Quantitative metrics to evaluate make-up gain . 38

3.10.1 Test data for benchmarking the system . 39

3.11 VST plugin implementation . 39

4 Results and discussions 41

4.1 VCF impulse response . 41

4.1.1 VCF frequency response . 41

4.2 Impulse response of the make-up gain stage . 42

4.2.1 Frequency response of make-up gain output 43

4.2.2 Equivalent continuous sound levels of gain-stage outputs 45

4.3 Elapsed time . 47

CONTENTS v

4.4 Testing system with other audio data . 47

4.4.1 Square wave of unit amplitude . 47

4.4.2 Whitacre’s "Water Night" composition . 48

4.5 Optimising the make-up gain system . 49

4.5.1 Obtaining make-up gain in linear scale . 49

4.5.2 Optimising the algorithm within logarithmic scale 50

4.6 Implementing the system as an audio plugin . 51

5 Conclusions 53

5.1 Conclusions drawn from results . 53

5.2 Recommended further works . 54

A Appendix 56

Bibliography 57

Acronyms

VST Virtual Studio Technology
DAW Digital Audio Workstation
SDK Software Development Kit

SPL Sound Pressure Level
ATH Absolute Threshold of Hearing
RMS Root Mean Square

ISO International Organization for Standardization
ITU International Telecommunications Union
ITU-R ITU, Radiocommunications Sector
EBU European Broadcast Union
RLB Revised Low-Frequency B-Curve
LKFS Loudness, K-weighted, Relative to Nominal Full Scale
LUFS Loudness Unit Relative to Full Scale
LU Loudness Unit (non-relative)

AGC Automatic Gain Control
VCA Voltage-Controlled Amplifier
ADC Analogue-Digital Converter

VCF Voltage-Controlled Filter
DSP Digital Signal Processing
LPF Low-Pass Filter

FIR Finite Impulse Response
SMA Simple Moving Average

IIR Infinite Impulse Response
EMA Exponential Moving Average

vi

1 | Introduction

1.1 Background

Dr. Robert Moog patented his design of the voltage-controlled low-pass filter (VCF, LPF) in

1965 [1] that would become a staple module in many of Moog’s eponymous brand of analogue

musical synthesiser products, and have been used in a variety of musical genres from electronic

music by Kraftwerk to Hans Zimmer’s film scores. Subsequently, a discrete-time implementation

of the filter was soon realised to allow for digital implementation, either on hardware chips or

software plugins for a digital audio workstation (DAW) program [2].

However, despite the many digital implementations of the Moog VCF being presented, all of

these models suffer the same issue of attenuating the band-pass frequencies when only those

outside the passband were to be attenuated. As such, the loudness of filtered signals (albeit

not exclusive to the Moog VCF) are almost always perceived as softly in comparison to the

unfiltered signal.

Given an increase in remote music production and virtual orchestration, and even more so due

to the Covid-19 pandemic preventing musicians from gathering or performing live music, it is

important that these digital tools are refined and available for musicians to use. One of such

tools include a novel method of restoring the signal amplitude post-filtering with no intermediary

human interaction required.

1.2 Motivation

Loudness has been a topic of contention between audio engineers and musicians, mainly due

to how abstract and difficult to quantify auditory perception is. In 1933 Fletcher and Munson

presented a series of curves that showed how the auditory system perceived different frequencies

[3], while in 1953 Stevens’s research showed empirically that loudness can be estimated in an

1

CHAPTER 1. INTRODUCTION 2

exponential form [4]. It was only recently that in 2004 Soulodre investigated that loudness of an

audio signal (be it analogue or digital) can be quantified using integrals and logarithms [5], and in

2006 the first sets of loudness standards were presented by the International Telecommunications

Union (ITU) [6].

Meanwhile, in 1996 Stilson and Smith’s paper [7] introduced multiple methods of analysing the

VCF and transforming it into a discrete system, and in 2004 Huovilainen’s paper [8] further

improved upon that by presenting a nonlinear digital model that captures the nonlinearities

intrinsic to the circuitry of the VCF. Neither parties solved the issue of loudness reduction in

the output time domain waveform. Since VCFs attenuate frequencies outside the passband,

this inevitably attenuates the time-domain magnitude of the signal and therefore reduces the

overall volume of the output relative to the original input. The issue became more complex with

Huovilainen’s works, where analytically obtaining the restoration gain of the nonlinear variant

was more difficult.

Daly’s works in 2012 [9] suggested that, considering focus on developing software-based digital

musical instruments and plugins, a scalable gain stage in the filter’s passband would account for

attenuation dependant on feedback. Additionally, current plugins of gain stages seldom provide

automatically-adjusting gains and require users to manually adjust the applied gain.

1.3 Objectives and specifications

This project aims to go a step further from Daly’s suggestion to implement a make-up gain

stage that automatically adjusts to the filtered signal that would, in brief, restore the perceived

output volume to match that of the original input audio, ideally as a DAW plugin.

In further details, the specifications are as follows:

� Implement an automatic make-up gain stage to the filter output, such that its perceived

loudness is restored to that of the original input signal.

� Ensure that the gain stage maintains the original signal envelope and frequency contents

in the amplified output signal, while minimising the output audio overshoot.

� Develop methods of allowing real-time audio input buffering and producing output with

the nonlinear VCF model, and implement this with the make-up gain stage as a DAW-

compatible audio plugin.

CHAPTER 1. INTRODUCTION 3

� Implement the entire system as a DAW-compatible audio plugin.

1.4 Software overview

All software packages used are listed in Table A.2 in the Appendix. MATLAB (R2020a) by

MathWorks was used to implement the necessary algorithms and the full system of the project

[10], while its Audio Toolbox provided the means of implementing the audio plugin as a Virtual

Studio Technology (VST) file [11]. Diagrams were drawn using diagrams.net package. All

relevant scripts and test audio files are uploaded to the project repository on GitHub (link to

the GitHub repository) and are listed in Table A.1.

1.5 Limitations

Despite the Covid-19 pandemic, the project was entirely completed in software and did not

require any hardware components. However, this inferred that only a software-based digital

implementation was made and no hardware-based solutions were available due to the circum-

stances. Access to a replica of the Moog VCF or building the circuit in the lab was also not

possible, and therefore data obtained in this project were completely derived from the software

processing platform.

1.6 Contributions

This thesis contributes the following:

� A novel method of restoring loudness of a signal, relative to a reference signal, in real-time.

� Investigated several loudness-acquisitioning techniques and evaluating their accuracies and

performance.

� A modular method of applying loudness-restoring amplification to the Moog VCF.

� Discussed the responses of a real-time automatic signal amplification module and its down-

sides in terms of performance and accuracy.

� Devised a method of using the seldom-looked feed-forward automatic gain control (AGC)

system as the basis of the gain stage.

� Implemented the system as a DAW-compatible audio plugin.

https://app.diagrams.net/
https://github.com/jpiamjariyakul/makeUpGainStage
https://github.com/jpiamjariyakul/makeUpGainStage

2 | Literature review

2.1 Quantifying loudness

Loudness is a subjective assessment of the perceived audio magnitude, and there exists many

definitions in audio literature that attempt to quantify its values [12]. Musicians assign the vari-

ations in loudness between notes and phrases as dynamics and are used extensively in western

classical music [13], however these terms do not identify an absolute scale of loudness and there-

fore are subject to interpretation by composers and musicians. Meanwhile, audio enthusiasts

often use the signal’s root-mean-squared (RMS) values as a measure of loudness, however the

International Telecommunications Union (ITU) had since defined a standard of loudness via its

ITU-R BS.1770 standard [6], which will be discussed later.

To offer a more objective criterion into loudness, the peak value and signal energy (thus the

signal power) of the audio signal can be considered instead. Considering discrete-time, the peak

value of a signal at time instance n gives the instantaneous magnitude of such signal.

2.1.1 Signal energy/power and root mean square

Signal energy is defined as the summation of the square of all samples’ magnitudes in a signal.

Ex =
∞∑

n=−∞
|x[n]2| (2.1)

where x is the signal concerned, Ex is the signal energy, and n is the index of the signal sample.

Given a finite signal of length N (where 0 < N < ∞), Eqn. 2.1 can be altered to account for

the finite energy such that 0 < Ex <∞:

Ex =
N−1∑
n=0

|x[n]2| (2.2)

4

CHAPTER 2. LITERATURE REVIEW 5

The signal power Px can be defined as the average of x[n] signal samples squared, thus the

average signal energy:

Px =
1

N

N−1∑
n=0

|x[n]2| ≡ 1

N
Ex (2.3)

The root mean square (RMS) value xrms of a signal x[n] refers to the square-root of the average

power of a signal, and has the same dimensions as x[n]:

xrms =

√√√√ 1

N

N−1∑
n=0

|x[n]|2 (2.4)

RMS values allow engineers to calculate the average power dissipation in analogue electrical

components [14]. Due to RMS values in audio signals being correlated to the acoustic power

dissipated in the audio equipment1, thus the sound projected by the speaker, musicians can

use these RMS values as a more reliable measure of audio loudness as compared to the signal

amplitude (hence referred by musicians as the true loudness) and therefore is a common metric

available in modern DAWs [15, 16]. As described by Kosbar, a brief signal jump may result in

a high peak amplitude but does not result in a loud sound, whereas a large RMS value infers a

loud signal and a small value infers a quiet signal [16].

2.1.2 Stevens’s power law

In 1953 Stevens empirically derived the "psychophysical power law" defined as

ψ(I) = kIα (2.5)

where ψ(I) is the sensation magnitude of a continuum, I is the stimulus magnitude and therefore

the intensity of the stimulus, k is an arbitrary constant dependent on the units of measurement,

and α is the sensory factor. It was shown that the sensation magnitude exponentially grows as a

power function of the stimulus magnitude. For a loudness continuum, α was derived to be 0.67.

Given signal energy is directly correlated to sound intensity, I can be substituted with Eqn. 2.1.

Eqn. 2.5 can then be reduced to

ψ(Ex) = kE0.67
x = k

(
N−1∑
n=0

|x[n]2|

)0.67

(2.6)

1Audio literature often erroneously equate RMS power of a signal to its average power which is incorrect:
average power is proportional to the square of the RMS voltage or current in a resistive load.

CHAPTER 2. LITERATURE REVIEW 6

where N is the finite length of the signal. The power law therefore provides an estimate to

loudness in terms of signal energy [4], however is not as a widely used metric in modern DAWs

as the RMS meter, and is ultimately not a reliable metric due to its static nature.

2.2 Frequency weighting techniques

While RMS and peak values allow engineers and musicians to determine the objective magnitudes

of a signal, neither accounted for the psychoacoustic aspects in loudness perception. The human

auditory system behaves as a band-pass filter such that some frequency bands (within the

auditory range of 20 to 20, 000 Hz) are more audibly perceived than others. As such, frequency

normalisation techniques are devised to compensate for the psychoacoustic factors.

2.2.1 Fletcher-Munson Equal Loudness Curves

In 1933 Fletcher and Munson conducted their experiment into how the human ear perceives

different frequencies at different levels, and presented their Fletcher-Munson curves, one of the

first equal-loudness contours as shown in blue per Fig. 2.1 [3]. A curve was generated by varying

the sound intensity, referred as the sound pressure level (SPL), of a reference pure tone across

a range of loudness levels, referred to as phons, and recorded the SPL where such loudness was

perceived as identical to that of a test tone. A phon refers to a tone being as perceptually loud

as a 1 kHz reference tone of the same SPL; for example, a sound of 40 phons has the same

perceived loudness as a 1 kHz tone at 40 dB SPL [12].

The curves show that equal-amplitude tones of different frequencies exhibit different levels of

loudness. For example, observe the 0 phons Fletcher-Munson contour, where a 1 kHz reference

tone with SPL of 0 dB exhibits the same perceived loudness as a 100 Hz test tone with 20 dB

SPL. As the loudness level increases, the curve shifts towards higher SPLs.

It was deduced that the perception of loudness in audio behaved akin to a band-pass filter,

where frequencies beyond certain frequency bands are more attenuated than those within the

passband. Since then, there have been many attempts at standardising equal loudness contours,

eventually resulting in the ISO 226 standard as shown in red per Fig. 2.1 [17].

The absolute threshold of hearing (ATH) was defined such that, for a given frequency, the

sound cannot be perceived (considering an average person) below such threshold [12], and is

shown in Fig. 2.1 where the ATH was found to closely resemble the lowest-phon contour of the

Fletcher-Munson curves.

CHAPTER 2. LITERATURE REVIEW 7

Figure 2.1: A comparison between the Fletcher-Munson and ISO 226 equal loudness contours
exhibit similar loudness-frequency response shapes, however the ISO 226 variant show steeper
responses at low frequencies and flatter responses at higher phons. The A-weighting scheme
(shown in a dashed black line crossing the 40-phon threshold at 1 kHz) provides a universal SPL
compensation format that can be applied regardless of frequencies or sound intensities, and is
based on the 40-phon equal loudness contour. Obtained from [12], original plots and specifications

from [3, 17, 18].

2.2.2 A-weighting

Since the human auditory system exhibits behaviors resembling a band-pass filter where auditory

sensitivity is reduced for lower and (albeit to a lesser extent) very high frequencies, frequency

compensation schemes for SPL measurements were devised. A-weighting, as shown in Fig. 2.1,

was developed based on the 40-phon curve to be a simplified weighting scheme for all frequencies

and sound intensities; this made A-weighting a very easy-to-implement and flexible frequency

compensation scheme.

However, since analysing the shapes of equal loudness curves are dependent on the loudness (i.e.

intensity) of the reference tone as discussed in Fig. 2.1, the scheme was criticised for ineffectively

compensating for low-frequencies at higher phons, and its failure to represent perception of noise

instead of pure tones (which were used in defining A-weighting). Other weighting techniques

were soon devised to address these shortcomings.

CHAPTER 2. LITERATURE REVIEW 8

2.2.3 Measuring the equivalent continuous sound level

In 2004 Soulodre conducted an ITU-R (ITU, Radiocommunication Sector) investigation in de-

termining suitable objective metering techniques for obtaining the perceived loudness of a multi-

channel signal. He developed the Leq(W) loudness metering algorithm as a performance baseline

for the other presented metering techniques [5, 6].

Figure 2.2: The Leq,W algorithm is a frequency-weightable equivalent sound level measure.
Processing can be done with simple time-domain blocks with very low computational requirements.

Modified from [6].

The algorithm to obtain the equivalent sound level (Leq) as described by Fig. 2.2 calculates

the mean-square measure of a sequence, and evaluate the frequency-compensated energy (per

Eqn. 2.1) in dB [5]:

Leq,w(t) = 10 log10

[
1

T

∫ T

0

(
x2
w

x2
ref

)
dt

]
≡ 20 log10

√
1

T

∫ T

0

(
xw
xref

)2

dt, dBw (2.7)

where the subscript w denotes the frequency weighting scheme used, T is the duration of the

discrete-time audio sequence, x is the weighted signal at the output of the weighting filter

and thus input of the meter, and xref is some reference level, typically the absolute threshold of

hearing of 20µ Pa. An unweighted signal would result in Leq of units dB, whereas an A-weighted

signal results in Leq,A with units dB,A.

It was determined that the Leq algorithm utilises simple time-domain blocks with very low

computational requirements [6]. The unweighted Leq corresponded to the RMS of the signal

which, according to Soulodre, obtained a good performance [5].

2.2.4 Soulodre’s Revised low-frequency B-curve weighting

The best performance in Soulodre’s study was obtained by applying the revised low-frequency

B-curve (RLB) weighting scheme to the input signal (thereby obtaining Leq,RLB). As shown in

Fig. 2.3 (in blue) the RLB weighting scheme is specified as a second-order high-pass filter per

CHAPTER 2. LITERATURE REVIEW 9

Fig. 2.4, with the coefficients considering sampling rate of 48 kHz shown in Table 2.1:

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(2.8)

Figure 2.3: The RLB weighting scheme (shown in blue) consists of a simple high-pass filter,
whereas the pre-filter (in orange) is a high-shelf filter. Both take the form of a second-order filter
presented in Fig. 2.4 and combine to form the K-weighting filter. Generated with MATLAB using

coefficients from [19] where fs = 48 kHz.

Figure 2.4: The RLB and K-weighting schemes can be realised as a second-order filter of the
form per Eqn. 2.8. Adapted from [5].

The study showed that applying the RLB weighting scheme to Leq,RLB obtained outputs that

showed closer correlations to the subjective loudness ratings, with the unweighted RMS equiva-

lent showing similar correlative results.

2.2.5 K-weighting (ITU-R BS.1770)

In 2006 the ITU-R BS.1770 technical report presented a novel algorithm for objectively mea-

suring the perceived loudness of multi-channel audio signals, designed to be implemented with

low-cost components. This algorithm, instead of the RLB weighting filter, uses a new frequency-

weighting scheme called "K-weighting", and is formed from a cascade of the RLB filter and a

CHAPTER 2. LITERATURE REVIEW 10

Coefficients Pre-filter (high-shelf) RLB (high-pass)
a1 −1.99004745483398 −1.69065929318241
a2 0.99007225036621 0.73248077421585
b0 1.0 1.53512485958697
b1 −2.0 −2.69169618940638
b2 1.0 1.19839281085285

Table 2.1: The coefficients to the feedforward and feedback paths of the RLB weighting and
pre-filter curves per the second-order filter shown in Fig. 2.4, considering a sampling frequency of

48 kHz. Values obtained from [5].

high-shelf "pre-filter" per Fig. 2.5. The block diagram of a stereo-channel loudness measure is

shown in Fig. 2.6.

Figure 2.5: The K-weighting filter can be realised as a cascade of RLB filter and a pre-filtering
block. Adapted from descriptions of the K-filter per [6].

Similar to the RLB filter, the pre-filter is constructed in the form of a second-order high-shelf

filter per Fig. 2.4 with the coefficients shown in Table 2.1. The frequency response of such

filter is shown in Fig. 2.3 (in orange), and its parameters (considering fs = 48 kHz) are shown

in Table 2.1. As such, the pre-filter’s coefficients can be obtained with Eqn. 2.13 for a given

sampling frequency.

Figure 2.6: The ITU-R BS.1770 multi-channel K-weighted loudness measure modifies the RLB-
weighted Leq measure from Fig. 2.2. The pre-filter prepending the RLB filter superimposes to
form the K-weighting filter. Additional channel and gate weighting were applied. Modified from

[6] to only consider left and right stereo audio channels.

As shown in Fig. 2.5, both the RLB and high-shelf filters combine to form the K-weighting filter.

Its magnitude response is shown per Fig. 2.7 The mean-square of the filtered signal over interval

CHAPTER 2. LITERATURE REVIEW 11

Figure 2.7: The K-weighting filter’s magnitude response is a combination of the RLB weighting
and the high-shelf pre-filter per Fig. 2.3. Generated with MATLAB using coefficients from [19]

where fs = 48 kHz.

T , thus the signal power, can be measured as:

zi =
1

T

∫ T

0
y2
i dt (2.9)

where yi is the K-weighted signal (as defined in Fig. 2.6), and suffix i denotes the type of audio

channel i.e. left L, right R, central C, left-surround Ls, or right-surround Rs channels. The

aggregate loudness Lk is therefore defined as:

Lk = 10 log10

[∑
i

Gizi

]
− 0.691 LKFS (2.10)

where −0.691 compensates for the response of the K-filter at 1 kHz. For each ith audio channel,

an additional channel weight Gi is applied: the weight of left, right, and central channels are

unity (i.e. 0 dB), whereas left-surround and right-surround channels have a weight of 1.41

(approximately +1.5 dB) [6, 19]. The designation LKFS, the "Loudness, K-weighted, relative

to nominal full scale", equates to a decibel, such that an increase in signal level by 1 dB increases

the meter reading by 1 LKFS.

2.2.6 Other techniques and developments

Since 2006 there have been considerable improvements upon the loudness model proposed by

the ITU. In 2015 the fourth revision of the ITU-R BS.1770 had appended an audio-gating stage

to the system presented in Fig. 2.6 where a set of LKFS thresholds were presented such that the

quiet periods in the audio signal do not influence the calculated average, and therefore only signal

CHAPTER 2. LITERATURE REVIEW 12

powers of time-domain blocks above such threshold contribute to the final LKFS measurements

[20, 19].

The European Broadcast Union (EBU) proposed the ’EBU-mode’ meter in 2011 that mea-

sures real-time loudness in accordance to [20], using three measurement methods of momentary

loudness, short-term loudness, and integrated loudness; the latter utilises the gating procedure

described by ITU-R BS.1770. The EBU also introduced the "Loudness unit relative to full

scale", the LUFS, which is a synonym to the LKFS but ensures that the naming convention is

compliant with other existing standards. Furthermore, the EBU had suggested that loudness

measurement be categorised into either of the following:

� Relative measurement, e.g. to a reference level or a range (i.e. Lk = xx.x LU)

� Absolute measurement (i.e. Lk = xx.x LUFS)

where, as discussed in [20], Lk is compliant to the naming convention Lw such that w indicates the

frequency weighting scheme used. These changes would also ensure that, given LUFS indicating

the value of Lk with reference to digital full-scale, the values of Lk and LUFS are equivalent

[21].

Additionally, the previously explored methods only considered single-band spectra, which do

not account for more complex spectral effects on perception of loudness, and outputs based on a

time-series [19]. Skovenborg and Nielsen proposed a novel long-term loudness metering method

in 2004 called LARM as part of his TC Electronic study [22] which, instead of outputting a time

series, estimates the global loudness, found by calculating the power mean of the amplitude

envelope.

2.3 Calculating second-order filter coefficients

As Soulodre’s technical report only presented the filter coefficients for fs = 48 kHz, in 2017 Ward

presented a method of determining the coefficients of the second-order filter for any sampling

frequency by considering its continuous biquadratic transfer function [19]:

H(s) =
VHs

2 + VB
ω
Qs+ VLω

2

s2 + ω
Qs+ ω2

(2.11)

where VH , VB, and VL respectively represent the high-pass, band-pass, and low-pass filter gains.

Q is the quality factor and ω is the angular cut-off frequency fc in radians per second (rads−1).

CHAPTER 2. LITERATURE REVIEW 13

Since the RLB and pre-K weighting filters presented in [5] uses the form presented in Eqn. 2.8,

mapping the transfer function to digital domain where s = 1−z−1

1+z−1 and ω → Ω = tan
(
π fcfs

)
yielded:

H(z) =

(
VLΩ2 + VB

Ω
Q + VH

)
+ 2

(
VLΩ2 − VH

)
z−1 +

(
VLΩ2 − VB Ω

Q + VH

)
z−2(

Q2 + Ω
Q + 1

)
+ 2 (Ω2 − 1) z−1 +

(
Q2 − Ω

Q + 1
)
z−2

(2.12)

Given the known filter coefficients for fs = 48 kHz, equating the coefficients of Eqn. 2.12 to

Eqn. 2.8 yielded the filter coefficients in terms of Ω and the other parameters, which can then

be normalised to a0:

b0 = VLΩ2 + VB
Ω

Q
+ VH a0 = Q2 +

Ω

Q
+ 1

b1 = 2
(
VLΩ2 − VH

)
a1 = 2

(
Ω2 − 1

)
b2 = VLΩ2 − VB

Ω

Q
+ VH a2 = Ω2 − Ω

Q
+ 1

(2.13)

The filter parameters for the high-pass RLB and high-shelf pre-K weighting filters, as described

in [5, 6] where fs = 48 kHz, is shown in Table 2.2. As shown in Eqn. 2.13, the coefficients are

Ω-dependent, therefore only Ω needs to be updated for a new sampling frequency fs.

Parameters Pre-filter (high-shelf) RLB (high-pass)
Q 0.7071752 0.5003270
VL 1 0
VB 1.2587209 0
VH 1.5848647 1.0049949

fc (Hz) 1681.9744510 38.1354709
Ω (rad) 0.1105318 0.0024960

Table 2.2: Parameters of the high-shelf and high-pass filters define the RLB and K-weighting
filters for fs = 48 kHz. Applying these to Eqn. 2.13 yielded the filter coefficients as described in

[5, 6]. Adapted from [19].

2.4 Automatic gain control

Automatic gain control (AGC) is a type of control system that, given dynamic input signal

strengths, automatically adjusts the output of a system to a rated level by controlling a variable

gain amplifier, essentially maintaining an almost-constant output level independent of the input

signal level. These systems often ensure that the subsequent blocks utilising the AGC output,

such as an analogue-digital converter (ADC), would not have a saturated input dynamic range,

and prevent the system from falling below the tolerable noise level [23].

CHAPTER 2. LITERATURE REVIEW 14

AGC is a nonlinear, time-dependent, and signal-varying feed system, and as such is very difficult

to analyse using time-domain or z-domain analysis techniques. This results in AGC analysis to

be empirical in nature, and hence why there hasn’t been much discussion of AGCs in digital

signal processing (DSP) literature [14]. Despite the lack of analytical studies, many successful

applications have been made that utilise these AGC techniques including a number of audio

DSP tools [24].

(a) Feedback AGC (b) Feedforward AGC

Figure 2.8: The AGC loops can be either feedback or feedforward. Feedback systems generate
the desired control signal by observing the output of the VCA Vout, whereas feedforward systems
observe the input Vin. Both systems compare the observed levels to the reference signal Vref .

Redrawn from [23].

The variable-controlled amplifier (VCA) is a signal-conditioning amplifier with a tunable gain

function G(Vc), such that it amplifies or attenuates an incoming signal to the desired level

depending on the value of Vc, the control voltage into the VCA, as set by the control loop.

A feedback AGC control loop observes the VCA output Vout and compares it to the reference

voltage Vref such that we want Vout set to this value. Meanwhile, a feedforward system observes

the current input into the VCA and compares its value to the reference voltage. Both types

generate the control voltage Vc that sets the VCA gain G(Vc). The two types of AGC loops are

shown in Fig. 2.8.

The system presented utilises logarithmic scales in calculations; Lyons suggested that this is to

increase the dynamic range of the AGC. A low-pass filter can also be implemented at the output

of the VCA to mitigate rapid gain fluctuations.

2.5 Analysis of the analogue Moog transistor ladder VCF

In brief, the Moog VCF is a transistor ladder circuit of four identical buffered stages [1] as shown

in Fig. 2.9, with each stage comprising of two identical NPN transistors and a capacitor. Each

ladder stage is driven by the output current of the previous stage, while the first stage is driven

CHAPTER 2. LITERATURE REVIEW 15

Type Advantages Disadvantages
Feedback Lower input dynamic range re-

quired by peak detector
Instabilities with high compres-
sion or expansion

Inherently higher linearity Higher settling-time required
Feedforward No instability problems AGC input dynamic range re-

quired by peak detector
Ideally, zero settling-time High linearity required in loop

Table 2.3: Summary of comparisons between the main AGC control loop characteristics. Copied
from [23].

by a differential transistor amplifier drawing the control current Ic. The differential output is

drawn from the transistors’ emitters at the final stage, and a portion of the output current is

fed back to the first stage via a feedback path.

With each stage, the base-emitter resistances of the two transistors form a one-pole voltage-

controlled RC filter, resulting in 3 dB attenuation per each stage at the cut-off frequency spec-

ified, assuming no feedback. Given the four stages in the VCF core, four one-pole filters are

cascaded onto each other resulting in 12 dB total attenuation with 24 dB/octave roll-off. The

magnitude response of the VCF varies with the feedback level, which can be tuned by separate

knobs for the cut-off frequency and its Q-value [25].

Figure 2.9: The core of the Moog VCF is the ladder circuit comprising of four transistor pair
stages. The input signal is fed at Stage 0 (i.e. the differential-pair amplifier stage) of the ladder,
while the differential output is obtained across Stage 4; part of the output is fed back as an inverted

feedback signal to Stage 0 of the ladder. Adapted from [26], original schematic from [1].

Stinchcombe’s paper [26] analysed the analogue Moog VCF in terms of the differential current

in each stage. Defining subscripts "1" and "2" as the upper and lower transistors with respect

to Fig. 2.9, for each stage V1 and V2 represent the transistors’ base-emitter voltages, while I1

and I2 denote the respective collector currents.

CHAPTER 2. LITERATURE REVIEW 16

2.5.1 Huovilainen’s analysis of the differential pair

The differential output of the ladder was found by identifying the relationship between V1, V2,

and (I1 − I2) with the following assumptions [8, 27]:

� DC current gain β is sufficiently large such that it is considered infinite, and therefore the

collector current and emitter current are equal.

� Both transistors in each stage are perfectly matched.

� Early effect is negligible.

� Resistor values at the transistors’ bases are small such that the base voltages are constant

for all stages, thereby ensuring each filter stage depended only on its state and the current

from the previous stage, and thus analysing only one stage was needed to extrapolate the

effects of the complete core.

The current different in a differential transistor pair per stage is defined as

I1 − I2 = (I1 + I2)tanh

(
V1 − V2

2VT

)
(2.14)

where VT ≈ 25mV (at room temperature) is the transistor thermal voltage.

2.5.2 Differential equation for a single stage

The currents I1 and I2 combine such that

I1 + I2 = 2Ictrl

I1 − I2 = 2Iin − 2Ic

(2.15)

where Ictrl is the control current of the ladder stage, Ic is the current through the capacitor, and

Iin is the input audio signal current. Applying Eqn. 2.15 to Eqn. 2.14 shows a new relation:

Ic = Iin − Ictrltanh
(
Vc

2VT

)
(2.16)

where Vc is the voltage across the capacitor. The equation for current Ic through a capacitor of

capacitance C is

Ic = C
dVc
dt

(2.17)

CHAPTER 2. LITERATURE REVIEW 17

Replacing Ic from Eqn. 2.17 into Eqn. 2.16 gives

C
dVc
dt

= Iin − Ictrltanh
(
Vc

2VT

)
(2.18)

Since each stage is driven by the previous one (or the differential input amplifier given the first

stage), Eqn. 2.16 can be written as

dVc
dt

=
Ictrl
C

(
tanh

(
Vin
2VT

)
− tanh

(
Vc

2VT

))
(2.19)

where Vin is the potential difference across the capacitor from the preceding stage.

2.6 Implementation of the discrete-time VCF

2.6.1 Stilson and Smith’s linear VCF analysis

Stilson and Smith’s analysis [7] approximated a linear response in each stage (assuming a small-

signal differential audio input signal [26]), and determined that the VCF employs the filter

structure per Fig. 2.10, where each stage G1(s) of the VCF resembles a one-pole LPF:

G1(s) =
1

1 + s
ωc

(2.20)

where a real-valued pole exists if and only if s = −ωc. The cut-off frequency ωc determines the

location of −12dB attenuation.

Figure 2.10: The Moog ladder filter can be represented as four cascading stages in open-loop,
with a portion of the output fed back to the first stage. Adapted from [7].

Given a complete 4-stage core with feedback, the transfer function is

H(s) =
Y (s)

X(s)
=

G1(s)4

1 + kG1(s)4
≡ 1

k +
(

1 + s
ωc

)4 (2.21)

CHAPTER 2. LITERATURE REVIEW 18

where k = [0, 4] is the feedback coefficient per Eqn. 2.32. The frequency response is therefore

H(jω) =
1

k +
(

1 + jω
ωc

)4 (2.22)

where |H(jω)| ≈ 1
1+k when ω � ωc, and |H(jω)| ≈ 1

ω4 as ω � ωc, its behaviours reminiscent to

that of a low-pass filter [27]. The variations between feedback coefficient k and cut-off frequency

ωc is seen in Fig. 2.11, where it is observed that increasing k results in a higher and narrower

peak at ωc and an increasingly attenuated pass-band.

Figure 2.11: The magnitude response of varying ωc ∈ (100, 10000) rads−1 and k ∈ (0, 2, 3.99)
shows an increase in magnitude for frequencies around ωc as k → 4, where the most emphasised
frequency is the resonant frequency. At ω = 0 the phase shift is 0◦, whereas at ω →∞ the phase
shift approaches −360◦. Meanwhile, at ωc the feedback signal is inverted (respective to the input
signal) with phase shift of −180◦; this results in superposition and thus emphasises frequencies

around ωc. Modified from [9] and generated with my own code, original plot from [7].

Stilson and Smith determined the complex gain of each stage at ωc [7] to be

G1(jωc) =
1

1 + j
≡ 1√

2
ej

π
4 (2.23)

This allowed them to obtain the complex gain of the entire 4-stage core:

G4
1(jωc) =

1

4
ejπ ≡ 1

4
(−1) (2.24)

CHAPTER 2. LITERATURE REVIEW 19

Thus, the total gain is 1/4 with an inverting phase (of −180◦), meaning that a ωc rads−1 input

sinusoid passing through the VCF core will have an output of 25% amplitude compared to the

input, and −180◦ phase-shifted (therefore inverted). Contrasting this to ω = 0 or ω →∞ where

the phases are non-inverting at 0◦ and −360◦ respectively, as shown in Fig. 2.11.

The Moog VCF core therefore comprise of four one-pole LPF stages as shown in Fig. 2.10, each

with cut-off frequency ωc that results in an inverted signal when ω = ωc. As k is incremented,

the feedback signal provides increasing constructive interference to the input signal (due to the

complex gain increasing) at frequencies around ωc. This was called ’corner peaking’ in analogue

VCF design [28], and refers to the resonance around the cut-off frequency (or resonant frequency,

when properly tuned) [25].

2.6.2 Stinchcombe’s pole-zero analysis of the linear VCF

The analysis of the linear model by Stilson and Smith coincided with Stinchcombe’s analysis

using the pole-zero technique [26]. He determined that the analogue frequency response is

determined by the positions of poles in the complex plane; given the linear Moog VCF model

[7] (thus a small-signal input assumption), it is possible to analytically determine such pole

positions by considering the denominator of the transfer function from Eqn. 2.21:

k + (1 + S)4 = 0 (2.25)

where S = s
ωc

is the normalised frequency [9]. S can therefore be obtained and plotted on a

pole-zero plane per Fig. 2.12.

S = −1 + (−k)
1
4 ≡ −1± k

1
4 e±j

π
4 (2.26)

As k = [0, 4] increases, the poles diverge from S = −1 + j0 at the same rate in a cross-like

pattern. At k = 4 the rightmost poles converge to σ = 0 thus the system self-oscillates at

ωc rads
−1.

2.6.3 Huovilainen’s implementation of the nonlinear VCF

As Stilson and Smith’s analysis (and the eventual digital form of the linear VCF) provided

useful information regarding the operations and the output of the Moog VCF, their paper

assumed that the components are linear and the input is of a small-signal value, and thus had

to ignore the nonlinearities in the analogue circuitry. These digital derivations were criticised

CHAPTER 2. LITERATURE REVIEW 20

Figure 2.12: The 4-stage analogue VCF poles diverge in a cross-like pattern from S = −1 + j0
with increasing k = [0, 4]. At k = 4, the rightmost poles converge to σ = 0 resulting in the filter
self-oscillating at the frequency ωc. Adapted from [9], original 3-dimensional model from [26].

by musicians, notably in Rossum’s paper [29], with the audio output lacking in "warmth"2 or

analogue distortion characteristics.

Huovilainen’s paper instead analysed the analogue circuit and obtained Eqn. 2.19, where he

would use Euler’s method, at time step n, to numerically solve the equation:

Vc[n] = Vc[n− 1] +
Ictrl
CFs

(
tanh

(
Vin[n]

2Vt

)
− tanh

(
Vc[n− 1]

2Vt

))
(2.27)

where Fs = 1
Ts

is the sample rate, such that Ts is the time interval between samples. This

allowed him to derive the difference equations for the full ladder filter [8].

He noted that, given small input levels (|x| < 0.5), the tanh function is approximately linear,

agreeing to Stilson and Smith’s analysis, and therefore found that Eqn. 2.27 has the same form
2The term "warmth" is subjective both in audio engineering and musical academia, however the general and

more quantifiable consensus is that "warmth" refers to an emphasis on lower to mid-range frequencies by audio
equipment [30]. In this case, the lack of "warmth" would refer to the audio output lacking in emphasis of low-mid
frequencies. However, tread this definition very lightly as it is ultimately anecdotal and difficult to quantify.

CHAPTER 2. LITERATURE REVIEW 21

as a digital one-pole LPF:

y[n+ 1] = y[n] + g(x− y[n]) (2.28)

where g = Ictrl/(2VtCFs) is an exponential weighting coefficient [31].

Applying scaled impulse invariant transform, such that the DC gain is unity, to Eqn. 2.27 [32]

showed that

g = 1− e−2π(Fc/Fs) ≡ 1− e−ωc/Fs (2.29)

where Fc is the cut-off frequency such that ωc = 2πFc. Applying this to Eqn. 2.27 gives

y[n] = y[n− 1] + 2Vtg

(
tanh

(
x[n]

2Vt

)
− tanh

(
y[n− 1]

2Vt

))
(2.30)

Given an analogue VCF and a ωc rads
−1 sinusoidal signal, each filter stage incurs a −45◦

phase shift, thus resulting in a total −180◦ overall phase shift. This phase shift and the signal

inversion, as discussed by Stilson and Smith, resulted in positive feedback on frequencies around

ωc. However, the unit delay in the feedback path results in an additional phase shift, causing

the total phase shift to be

ptotal = 4pstage(f, Fc) + 180◦
f

Fs
(2.31)

where ptotal is the total phase shift in degrees, and pstage is the phase shift of one VCF stage. The

additional phase shift causes the resonance frequency to offset from the cut-off frequency, and

additionally makes the feedback amount required to produce the desired resonance frequency-

dependent.

Huovilainen compensated by altering the filter structure (instead of Stilson and Smith’s method

of using a tuning and resonance compensation tables). Applying a half-unit delay, via averaging

two output samples (at n and n−1), allows the model’s frequency response to be improved, and

ensures the resonance frequency is close to Fc as possible.

2.6.4 Daly’s dimensionless difference equation variants

Daly’s thesis eventually aggregated the previous analyses and digital derivations [7, 8, 26], and

recasted Eqn. 2.19 into a form such that their values utilise dimensionless variables [9]:

dvi
dt

= ωc (tanh(vi−1)− tanh(vi))

v0 = vin − kv4

(2.32)

CHAPTER 2. LITERATURE REVIEW 22

where vin is the input audio signal into the VCF ladder, i = {1, 2, 3, 4} labels the four ladder

stages, k = [0, 4] is the feedback gain, and ωc is the filter cut-off frequency in rads−1.

2.7 Virtual Studio Technology (VST) plugins

Virtual Studio Technology (VST) is a type of audio plugin software interface that allows users to

add functionalities to DAWs, be it synthesisers, effects, or sound libraries [33]. In 1996 Steinberg

GmbH released its first VST interface specifications and the software development kit (SDK),

and has since been updated to version 3.6.7 in 2017 [34]. The MATLAB Audio Toolbox, first

released in 2016, allows MATLAB users to build their own VST plugins from programmed

specifications [11].

3 | Design and implementation

3.1 Design parameters and assumptions

The goal of the project was to design and implement a novel make-up gain stage that would

amplify or attenuate a filtered signal, such that its volume, i.e. loudness, would match to that of

the original signal. At its simplest, the make-up gain is realised as an open-loop amplifier [27]:

xo[n] = Gn (Li,n, Lf,n)xf [n] (3.1)

where n is the current sample index in the signal, xo[n] is the desired amplified output signal,

xf [n] is the filtered audio signal at sample n, and Gn (Li,n, Lf,n) is the make-up gain to apply

to xf [n], such that Li,n and Lf,n are the values to consider for the input and filtered signals,

respectively, at sample [n].

This is shown in Fig. 3.1 where the make-up gain is dependent on the values of Lf,n = F (xf [n])

and Li,n = F (xi[n]) such that F (x) is an arbitrary function that computes the loudness of

x[n], be it a single value or over a vector. As these calculations use processing time, the delay

block z−M was added to represent these functionalities in real-time, where M is the total delay

required to calculate Lf,n, Li,n, and Gn such that their values correspond to the same n index.

Meanwhile, the delay block z−N delays the original signal before entering the gain stage, where

N is the total delay generated from applying the Moog 4-pole filter (or any other processing

prior to the gain stage).

As such, the system has the following parameters and assumptions:

� The system is causal; calculating the current make-up gain only depends on the current

and/or past values of the signals. This is realistic as real-time audio streaming does not

have future values.

23

CHAPTER 3. DESIGN AND IMPLEMENTATION 24

� The audio rate, i.e. sampling frequency, is 44.1 kHz. This sample rate was conceived

to accommodate the audiovisual media stored in compact discs [35], and thus resulted in

many audio equipments to run at 44.1 kHz; 48 kHz was rarely used reserved for professional

usage. While the higher sampling rate became used more commonly over time, many audio

equipments still operate at 44.1 kHz in spite of no available discussions for the smaller

sampling rate in the reviewed literatures [5, 6, 19], and as such is a subject of study.

Note that other sampling frequencies are applicable with further calculations, however the

subject of this thesis is the sampling frequency 44.1 kHz.

� There are no previous audio signals stored in the system before initialisation (i.e. n = 0)

(therefore no prior loudness was stored), thus initial conditions are xi[n < 0] = 0, xf [n <

0] = 0, and xo[n < 0] = 0.

� Calculations presented in Fig. 3.1 infer delay blocks. As computations require time to

complete, software DSP operations (i.e. in MATLAB) abstract these delays in the form of

concurrent lines of code, whereas hardware designs have explicit delay blocks introduced.

Thus, delays must be considered to conform to real-time implementations for all platforms.

� The frequencies and resonances retained by the preceding LPF must remain intact. Like-

wise, frequencies beyond the LPF passband should remain attenuated as much as possible.

� For all incoming values, the algorithm should return acceptable results as fast as possible.

That is, streaming audio into the algorithm should return results that do not noticeably

lag behind the source. Very small delays are acceptable as musicians and audiences would

not likely notice such small lag times.

Figure 3.1: The baseline automatic gain stage can be visually represented as a feed-forward
AGC system not unlike Fig. 2.8b. The make-up gain Gn is generated by considering values from
xf and xi, such that the loudness of the gain-applied Gnxf [n] = xo[n] is equal to that of xi[n].
The delay blocks z−M and z−N represent the total delays in the system and represents how this

algorithm would operate in real-time.

CHAPTER 3. DESIGN AND IMPLEMENTATION 25

3.1.1 Choosing the programming language

MATLAB (version R2020a) [10] is utilised as the main processing platform since it provides

many optimised built-in functions that allow for rapid mathematical calculations, which would be

required for a real-time processing program. Other programming languages were considered, such

as Python 3 due to familiarity with the language, however these languages do not allow for VST

audio plugin generation and benchmarking techniques that MATLAB’s Audio Toolbox provided

[11]. While C++ (via the Steinberg SDK [33]) also allowed for plugin developments, MATLAB

provides a platform that effectively abstracts issues unrelated to the algorithms themselves (i.e.

memory allocation, architecture deployment, code verbosity) and allows for rapid prototyping

of algorithms and techniques used in the project, while C++ would flag these issues during

compilation, thereby slowing down the development process.

However, MATLAB is slower than C++ due to being an interpreted language instead of a

compiled language, where the latter would be noticeably faster due to optimisations done in

compile-time. Despite this, MATLAB’s built-in libraries were pre-optimised by MathWorks

such that the speed differences in simulations and plugin runtimes are effectively negligible, and

its abstracting nature made MATLAB a reasonable choice for this project.

3.2 Signal energy as a loudness metric

As discussed in Section 3.1, the goal of the gain generator is to process the loudness values

Lf,n and Li,n of the filtered and input sequences respectively, and return the make-up gain Gn

that would amplify the loudness of the filtered signal xf [n] such that Lf,n = Li,n. An intuitive

method would be to divide Li,n by Lf,n and derive Gn:

Gn =
Li,n
Lf,n

≡ F (xi)

F (xf)
(3.2)

where F
(
x[i,f]

)
is the mathematical function that generates the loudness values L[i,f]. As loud-

ness is a temporal property over a range of time, or window of size N samples considering

discrete signals, a rudimentary loudness criterion derived from signal energy can be used. For

reiteration from Eqn. 2.2, the signal energy of a signal is defined as:

Ex =

N−1∑
n=0

|x[n]2| (3.3)

CHAPTER 3. DESIGN AND IMPLEMENTATION 26

where N is the number of samples to consider within a window such that its time duration

equivalent is sufficient (i.e. a 400 ms window was suggested by the EBU [21]; given fs = 44.1 kHz

that makes N = 17640), n is the sample index, and x is the signal to extract the loudness from.

By defining the loudness as the energy level of a windowed signal, the make-up gain can be

defined as:

Gn =
E(xi)

E(xf)
=

∑N−1
n=0 xi[n]2∑N−1
n=0 xf [n]2

(3.4)

3.2.1 Psychoacoustic compensation with Stevens’s power law

Signal energy alone is not a sufficient metric to compute loudness due to psychoacoustics being

unaccounted for. Stevens’s power law uses a variant of signal energy providing a more accurate

perception of loudness, as reiterated:

ψ(Ex) = k

(
N−1∑
n=0

x[n]2

)0.67

(3.5)

where the exponent of 0.67 was chosen as the continuum concerned is loudness [4]. Thus, a more

appropriate loudness-derived gain factor can be obtained in the same form as Eqn. 3.4, and the

block diagram of the algorithm is shown in Fig. 3.2:

Gn =
ψ(E(xi))

ψ(E(xf))
=

(∑N−1
n=0 xi[n]2∑N−1
n=0 xf [n]2

)0.67

(3.6)

Figure 3.2: The make-up gain algorithm implemented with Stevens’s power law compares the
two signal energies of the filtered and input signals. L delays are inferred at each square summation
block, and G total delays resulted from the division and exponentiation functions to obtain Gn. F
delays precede the input signal xi due to such delays being introduced by obtaining xf as shown

in Fig. 3.1.

Stevens’s power law is not the only available criterion for loudness, as there are many other

CHAPTER 3. DESIGN AND IMPLEMENTATION 27

measures that provide a more precise set of loudnesses for the same audio signal that will be

explored in detail later. It does, however, provide a proof-of-concept for the feedforward AGC

structure that can accommodate for more advanced loudness evaluation techniques.

3.2.2 Designing a moving window buffer

Calculations involving summation such as signal energy and loudness via Stevens’s power law

(among other methods explored later) require a signal window of size N , where N is the discrete

duration of the signal to consider. Considering a moving window into the signal, the window

would be initialised with a preallocated queue array of zeroes under the assumption that are are

no pre-existing signals in the system. This window would move through the signal capturing all

the points individually, as older values are pushed further into the array until discarded. The

process is demonstrated in Fig. 3.3.

Figure 3.3: The windowing process captures the signal values one by one and moves them
through the memory array, with older values getting gradually discarded. In this example N = 3
is the window size, and n is the individual values in the full signal (and thus iterations required to
capture the whole signal). The size of the window array is static and pre-defined, and is assumed
to only contain zeroes before initialisation (i.e. n < 0). Due to the causal assumption, the window

only includes current and previous values.

Windowing allows the make-up gain algorithm to observe loudness-varying signals in small

timeframes, referred to as buffers, with consideration of previous values, allowing for smoother

gain transitions in contrast to considering one value without a window. This is also a realistic

approach to compute for real-time audio streaming, as new values would be constantly fed to

the algorithm without precognition of future values, thus the results would have to be obtained

quickly.

The maximum size of the window determines how much physical memory will be required. A

larger window size will consume more memory and take longer to process, but returns more

smoothly-transitioning values, whereas a smaller window consumes less memory and takes a

CHAPTER 3. DESIGN AND IMPLEMENTATION 28

short time to process, but returns values that may not transition smoothly between each other.

As such, a reasonable window size will be required that transitions values smoothly while not

consuming excessive memory. The ITU and EBU’s reports recommended that a sliding rect-

angular window of 400 ms should be used [20, 21]. The pseudocode implementation of the

windowing process is shown in Fig. 3.4.

Figure 3.4: Pseudocode implementation of windowing audio sequences.

3.3 Generating gain with RMS values

The mean-square average presented in Eqn. 2.7 provides a more objectively precise loudness

compared to other techniques, where its discrete form can be derived [5]:

leq[n] =
1

N

N−1∑
n=0

xw[n]2

Leq[n] = 20 log10

√
leq[n] ≡ 10 log10(leq[n]), dBw

(3.7)

where w denotes the frequency-weighting scheme used, leq is the intermediary (linear scale)

loudness, xw is the frequency-weighted signal to measure the loudness of, and N is the length

of such signal. It can be observed that Leq is a frequency-weighted RMS square-summation in

the form presented in Fig. 2.2, and by observing Eqn. 3.7 it was deduced that the algorithm

resembles a finite impulse response (FIR) filter as shown in Fig. 3.5.

Figure 3.5: The RMS algorithm described in Eqn. 3.7 takes the form of an FIR filter with a
window size of N .

Since a window of 400 ms was used to capture the signal’s values, xw can be considered as a

CHAPTER 3. DESIGN AND IMPLEMENTATION 29

memory sequence storing the current sample and past 400 ms. A sampling rate of fs = 44.1 kHz

results in N = 0.4(44100) = 17640 samples. This simple algorithm utilised a considerable

amount of multiplication and summation blocks in the mean-square calculation process, and is

computationally slow and intensive which is not ideal in real-time applications such as audio

processing. Thus, an alternative method was derived to be more suitable for real-time processing.

3.3.1 Implementing the RMS algorithm as a simple moving average filter

Realising the RMS summation algorithm from Eqn. 3.7 as an equivalent recursive simple moving

average (SMA) digital filter, as shown in Fig. 3.6, simplified the equation to:

leq[n] = leq[n− 1] +
1

N

(
xw[n]2 − xw[n−N]2

)
Leq[n] = 10 log10(leq[n]), dBw

(3.8)

where Leq is the logarithmic loudness (in dB), leq is the non-logarithmic loudness value, and N

is the ’window’ size. The pseudocode implementation is shown in Fig. 3.7.

Figure 3.6: The discrete SMA Leq filter calculates the RMS loudness of a signal with only
two memory elements required (i.e. one for the squared-input signal, and at the linear loudness
output), and requires only two multiplier blocks and two addition blocks (with an additional
logarithm converter at the output). These changes greatly reduced the complexity and memory

requirements of the method in Fig. 3.5 while retaining the same functionalities.

This method operates the same as Eqn. 3.7 and yet reduces the amount of computation required

to obtain the same output, only requiring two addition and three multiplier blocks (although

an additional multiplier and logarithmic blocks are required to obtain the output in logarithm

form), and stores only the previous output leq[n− 1] and the previous input of xw[n− (N + 1)]

without the full N -size window in memory. Therefore unlike Eqn. 3.7, utilising a large N would

not affect the amount of memory utilised.

However, the implemented filter cannot capture information outside such ’window’ due to its

rectangular FIR property (i.e. the filter ’cuts off’ signals outside the ’window’) as shown in

Fig. 3.8, and so a sufficiently large N would still be required to capture all the information.

CHAPTER 3. DESIGN AND IMPLEMENTATION 30

Figure 3.7: Pseudocode implementation of the SMA algorithm.

Figure 3.8: The impulse response of the SMA and EMA’s weighting schemes affect the amount of
information observed by the time-weighting algorithms. The SMA algorithm utilises a rectangular
window of finite length (i.e. in this plot, of N = 17640 samples) that drops all values outside its
range, while the EMA algorithm uses a decaying exponential ’window’ of infinite length and applies

exponentially decreasing weight to older values without dropping the previous values.

3.4 Obtaining loudness with the exponential moving average

A solution to the ’cut-off’ windowing issue presented in Eqn. 3.8 was to use a window with an

infinite impulse response (IIR), such that the IIR filter does not ’cut off’ data points outside

window (due to having an infinite window). The exponential moving average (EMA) filter [19]

shown in Fig. 3.10 bore similarities to the SMA filter with two key difference: the ’window’

exponentially decays and has infinite length as shown in Fig. 3.8, and only one memory element

is required to store the previous loudness lτ [n− 1]:

lτ [n] = αxw[n]2 + (1− α)lτ [n− 1]

Lτ [n] = 10 log10(lτ [n]), dBw

(3.9)

where τ denotes the time constant of the exponential (in seconds). The pseudocode implemen-

tation of the algorithm is shown per Fig. 3.9.

CHAPTER 3. DESIGN AND IMPLEMENTATION 31

Figure 3.9: Pseudocode implementation of the EMA algorithm.

The weighting coefficient α is calculated as:

α = 1− e−1/(fsτ) (3.10)

where fs is the sampling frequency. A greater τ increases the exponential decay rate and reduces

the contribution of new input values to the overall loudness. The filter is stable if 0 < α < 1,

thus 0 < (1− α) < 1. Three time constants were often used in these measures [36]:

� Slow: 1 second

� Fast: 0.125 seconds

� Impulse (obsolete): 0.035 seconds (attack1 phase), 1.5 seconds (decay2 phase)

Figure 3.10: The EMA Lτ filter calculates the average loudness of a signal with an infinite-length
window, where past values have less weight than current values according to Eqn. 3.10. The sole
memory element stores the previous loudness calculation, and four arithmetic blocks are required

(excluding the logarithm converter at the output).

These recursive moving average filters are often called ’time-weighting’ filters due to weight-

ing previous values over time instead of ’frequency-weighting’ filters that weight the frequency

contents of the incoming signal.
1Attack and decay refers to how the signal changes with respect to its current value. If a signal is rising, then

it is in its attack phase, otherwise it is in its decay phase. This is NOT the same attack or decay as in ADSR
envelopes, which is irrelevant to and outside of the project scope.

2See footnote 1.

CHAPTER 3. DESIGN AND IMPLEMENTATION 32

3.5 Generating gain with SMA/EMA filters

The SMA and EMA algorithms can be adapted to Fig. 3.2, and thus the make-up gain can be

obtained per Fig. 3.11 and Eqn. 3.11:

err[n] = Li[n]− Lf [n] = 20 log10

√
li[n]

lf [n]
≡ 10 log10

(
li[n]

lf [n]

)

G[n] = 10
err[n]

20 =

√
li[n]

lf [n]

(3.11)

where err[n] is the loudness difference (in logarithmic scale) between the reference signal and the

signal to apply the gain to, and G[n] is the correcting gain required (in linear scale) to ’correct’

the loudness of the signal at sample n. The 10 log10() calculations shown in Eqn. 3.7 provides

the gain-generating block G[n] with a large dynamic range (via err[n]) to accurately calculate

the gains required for each sample. The effects of not using a logarithmic scale to calculate Gn

will be explored in a future section.

The same time-weighting filters were used for both the original input xi and the filtered signal

xf (i.e. applying EMA to xi requires applying EMA to xf and not SMA) and not in conjunction.

Figure 3.11: The moving average filters (i.e. SMA and EMA) can be used to obtain the make-up
gain Gn, where lf and li are the linear outputs of the time-weighting filters, and Lf and Li are
their logarithmic equivalents per Eqn. 3.8 and Eqn. 3.9 used for obtaining the error err[n], and
thus the make-up gain G[n]. Delay blocks z−A, z−L, and z−G refer to the inferred delays due to

the time-weighting algorithms, logarithmic conversions, and calculating err[n] and G[n].

CHAPTER 3. DESIGN AND IMPLEMENTATION 33

3.6 Calculating K-filter coefficients at 44.1 kHz

As discussed in Section 2.2, frequencies in audio waveforms are not heard at equal loudness

perceptions. The ITU-R BS.1770 was therefore used to weight frequency contents of incoming

audio signals, ensuring that the algorithm would normalise the filtered and reference signals

according to human perception of loudness.

The K-filter was defined as a cascade of the RLB filter and the pre-K weighting filter, both which

are implemented in the form of a second-order filter per Fig. 2.4 [6]. Ward derived a method to

calculate the filter coefficients for any sampling frequencies by utilising the set of equations [19],

as reproduced here:

b0 = VLΩ2 + VB
Ω

Q
+ VH a0 = Q2 +

Ω

Q
+ 1

b1 = 2
(
VLΩ2 − VH

)
a1 = 2

(
Ω2 − 1

)
b2 = VLΩ2 − VB

Ω

Q
+ VH a2 = Ω2 − Ω

Q
+ 1

(3.12)

where Ω = tan
(
π fcfs

)
is the parameter dependent on the specified sampling frequency fs, and

therefore the independent variable in Eqn. 3.12. The calculated coefficients for fs = 44.1 kHz

are shown in Table 3.2 using parameters from Table 3.1.

Parameters Pre-filter (high-shelf) RLB (high-pass)
Q 0.7071752 0.5003270
VL 1 0
VB 1.2587209 0
VH 1.5848647 1.0049949

fc (Hz) 1681.9744510 38.1354709
Ω (rad) 0.1105318 0.0027166

Table 3.1: For an arbitrary sampling frequency, only the values of Ω needed updating to obtain
the parameters defining the cascaded K-weighting filters. Values except Ω copied from [19], Ω =

tan
(
π fcfs

)
calculated manually for fs = 44.1 kHz.

Coefficients Pre-filter (high-shelf) RLB (high-pass)
a1 −1.66365510075392 −1.98916967282163
a2 0.712595415205997 0.989199034978896
b0 1.53084122270645 0.999560065414779
b1 −2.65097997332479 −1.99912013082956
b2 1.16907906507042 0.999560065414779

Table 3.2: The coefficients to the feedforward and feedback paths of the RLB weighting and
pre-filter curves per the second-order filter shown in Fig. 2.4, considering a sampling frequency of

44.1kHz. Values calculated with Eqn. 3.12.

CHAPTER 3. DESIGN AND IMPLEMENTATION 34

3.7 Constructing the K-filter

Previous discussions in Section 2.2.5 showed that the K-filter is a cascade of the RLB and pre-K

weighting filters, as shown in Fig. 3.12. Essentially, the signal concerned (i.e. the filtered or

reference signals) is passed through the pre-K weighting filter, then the output is passed to the

RLB filter. The resulting output of the RLB filter is considered the output of the K-filter, where

loudnesses measured are K-weighted (and given dB, units are LKFS).

Figure 3.12: The K-weighting filter is a cascade of RLB filter and a pre-filtering block. Redrawn
from Fig. 2.5 to consider discrete signals.

3.7.1 Implementing the RLB filter

The RLB filter can be implemented using the derived coefficients shown in Table 3.2. The

difference equations for the filter shown in Fig. 2.4 is:

w[n] = x[n]− a1w[n− 1]− a2w[n− 2]

y[n] = b0w[n] + b1w[n− 1] + b2w[n− 1]
(3.13)

where y is the filter output, x is the filter input, and w are the internal delay values of the filter.

The system diagram is shown in Fig. 3.14 where Eqn. 3.13 is represented as two cascaded filters.

A pseudocode implementation of an arbitrary second-order filter is shown in Fig. 3.13, where the

entire signal can be processed altogether or in small buffers (including individual values). The

pseudocode processes the feedback path first in order to obtain the intermediary delay values,

before computing the output with the forward path.

Passing the filtered and reference signals into separate filter function calls, with the RLB filter’s

coefficients at 44.1 kHz, returned the respective RLB-weighted signals.

3.7.2 Implementing the pre-K weighting filter

The pre-K weighting filter can be implemented in the same way as the RLB. Since the pre-K

weighting scheme is in the form of a second-order digital filter, the filter can be realised in the

form of Eqn. 3.13. As such, the pre-K high-shelf filter’s coefficients shown in Fig. 3.2 can be

passed as parameters into the filtering function per Fig. 3.13 and applied to the desired signals.

CHAPTER 3. DESIGN AND IMPLEMENTATION 35

Figure 3.13: Pseudocode implementation of a second-order digital filter. The function should
accept and filter either a singular value or an array of samples. The returned delays can be used

for the next continuous set of signals.

(a) Feedback path (b) Forward path

Figure 3.14: The second-order filtering algorithm can be considered as two cascaded filters,
where the feedback path obtains the values required by the forward path.

3.7.3 Applying K-weighting to gain generation

The K-filter blocks were set such that they prepended the loudness calculations for both the

filtered and reference signals, as shown in Fig. 3.15 adhering to the ITU-R BS.1770 presented

in Fig. 2.6 [6].

3.8 Implementing the nonlinear Moog VCF

Considerable work had been done by Stilson and Smith, Huovilainen, and Daly [7, 8, 9] in

deriving the digital variants of the nonlinear Moog VCF. Huovilainen started his implementation

by modelling the linear Moog VCF as a recursive digital filter as shown in Fig. 3.16:

yi[n] = yi[n− 1] + g(yi−1[n]− yi[n− 1])

y0[n] = x[n]− ky4[n− 1]
(3.14)

CHAPTER 3. DESIGN AND IMPLEMENTATION 36

Figure 3.15: The K-weighting filters were placed before loudness calculation blocks from
Fig. 3.11. This ensured that the specification of calculating loudness would conform to the ITU-R
BS.1770 recommendation [6], where the SMA and EMA algorithms provided the same functional-
ities as a mean-square measure. Delay blocks z−K were introduced to both filtered and reference

inputs as a result of the filter’s functionalities.

where x is the input signal, i = {1, 2, 3, 4} labels the four ladder stages, yi are a set of outputs

from each stage of the VCF ladder, y0 is the input into the ladder itself, k = [0, 4] is the feedback

gain, and g is the exponential weighting coefficient per Eqn. 2.29. Huovilainen later modified

the model such that the fed-back value was the average of two delayed outputs:

y0[n] = x[n]− k
(
y4[n− 1] + y4[n− 2]

2

)
(3.15)

while yi[n] was retained, claiming that this modified feedback delay improves the phase response

of the VCF. The block diagram of this modification is shown in Fig. 3.17.

.

Figure 3.16: A linear digital Moog VCF stage can be modelled as a recursive filter. Four of such
stages are cascaded and fed back to the input in the same form as Fig. 2.10.

Huovilainen transformed his linear, delay-modified model into the nonlinear variant by applying

tanh functions at the inputs of each ladder stage:

yi[n] = yi[n− 1] + g (tanh (yi−1[n])− tanh (yi[n− 1])) (3.16)

CHAPTER 3. DESIGN AND IMPLEMENTATION 37

.

Figure 3.17: The modified variant of the feedback model in Fig. 2.10 claimed to improve the
phase response of the filter.

while using the delay-modified feedback model per Eqn. 3.15. As discussed in [8], tanh blocks

were introduced to model the nonlinearities in the analogue components that claim to give the

Moog VCF its revered ’warmth’ [29].

.

Figure 3.18: The nonlinear digital Moog VCF stage is a modified variant of the stage shown in
Fig. 3.16, where tanh blocks were place at the input and the fed-back output.

The pseudocode to this nonlinear VCF implementation is shown per Fig. 3.19.

.

Figure 3.19: Pseudocode implementation of Huovilainen’s nonlinear digital Moog VCF model,
with Daly’s dimensionless adaptations as discussed in Eqn. 2.32.

CHAPTER 3. DESIGN AND IMPLEMENTATION 38

3.9 Combining the VCF and make-up gain stages together

With the filter implemented, the full system can be realised as shown in Fig. 3.20. The VCF

prepended the make-up gain stage and accepted the original input signal to be filtered. Con-

trolling the cut-off frequency and feedback gain, the filter would output the filtered version of

the original input signal. The filtering process would infer a certain amount of F delays, and as

such the input signal was buffered that specific amount (this was abstracted on MATLAB and

many high-level programming languages).

.

Figure 3.20: The full system combining the feedforward AGC with the Moog VCF model. The
delay block z−F buffers the original input signal so that the gain calculated by the make-up gain

stage is synchronised with the VCF output.

The make-up gain follows the structure from Fig. 3.15 and took the inputs of the original

(delayed) and the filtered signals, outputting the gain-applied filtered signal, thus restoring

the loudness of the filtered signal to closely match that of the original input. As shown in

the diagram, the K-weighting, logarithm-antilog operations, and SMA/EMA filters all inferred

delays upon the filtered output as the samples and gains must be synchronised (once again, this

is abstracted in MATLAB).

3.10 Quantitative metrics to evaluate make-up gain

A number of metric could be devised to help quantitatively evaluate the performance of the

make-up gain stage.

� Make-up gain calculations of a signal must not take longer than the time duration of the

signal itself, ensuring that calculations are fast and reliable.

� The waveform envelope of the output signal must have similar shape to the original signal.

� Loudness envelopes between the original input and gain-restored output signals are similar.

Comparing the impulse responses between the output of the VCF and the make-up gain output

CHAPTER 3. DESIGN AND IMPLEMENTATION 39

shows the amount of distortion that the gain stage would impose on a signal, and allows us to

observe how much of the pass-band frequencies are preserved per the requirements stated earlier.

As the make-up gain algorithm intends to restore signal loudness in a waveform over time,

Waveform envelopes between the input and output signals should also be compared to compute

the amount of loudness restored by the algorithm. Applying an EMA with a long-duration time

constant (i.e. 1 second [19]) extracts the envelope of the signal concerned. Subtracting the

envelope of the final output with that of the initial input obtains the amount of loudness that

the make-up gain stage was able to restore.

Additionally, many high-level programming languages and development platforms offer methods

of estimating time taken to run codes. Essentially, a timer is started before running the make-up

gain calculations, then stopped once the calculations are completed. The difference between stop

and start times can be considered the elapsed time of the algorithm. The value of this elapsed

will depend on the duration of the signals concerned.

3.10.1 Test data for benchmarking the system

A number of audio data sets can be used to test the functionalities of the make-up gain and

Moog VCF, including the following:

� Impulse (full signal of 1 second) to obtain the impulse response and observe its frequency

response.

� Square wave of 10 seconds at 220 Hz to test the Moog VCF’s low-pass characteristics and

restoration of the filtered signal’s equivalent loudness.

� Eric Whitacre’s musical composition "Water Night" [37] to test the system’s practical

applications in low-pass noise removal and media streaming.

These test data are to be generated/sampled at fs = 44.1 kHz.

3.11 VST plugin implementation

The developed make-up gain and VCF systems can be used in a DAW program by converting

the system into a VST audio plugin using MATLAB’s Audio Toolbox [11].

To minimise memory consumption, the EMA method was used for real-time processing instead

of the SMA, as the latter still required storing previous N values within the window as shown

CHAPTER 3. DESIGN AND IMPLEMENTATION 40

in Fig. 3.6, while the EMA only requires storing the previously obtained loudness per Eqn. 3.9.

Since the make-up gain stage has no tuning parameters involved, the only controls were the

cut-off frequency and feedback gain of the VCF stage. To control the strength of the make-up

gain applied on the filtered signal, a new ’gain strength’ factor can be applied. Ranging from 0

to 1 (equivalently 0− 100%), this factor scales how much of the calculated make-up gain will be

applied to the filtered signal:

xo[n] = (1− λ)xf [n] + λ(G[n]× xf [n]) (3.17)

where λ is the ’gain strength’ factor, G is the make-up gain, xf is the filtered signal, and xo is

the final system output. At λ = 0 (i.e. at 0%) the system outputs does not apply the make-up

gain and functions only as the VCF, while λ = 1 (i.e. at 1000%) results in the full gain being

applied. Any values of λ where 0 < λ < 1 scales the make-up gain accordingly. The proposed

layout of the plugin is shown in Fig. 3.21.

Figure 3.21: Layout of the audio plugin implementation of the entire system, including the VCF
and make-up gain stages. The tunable parameters are the VCF cut-off frequency and feedback

gain, and a factor scaling the make-up gain.

4 | Results and discussions

4.1 VCF impulse response

Analysis of the impulse response of Huovilainen’s Moog VCF implementation [8] had been

discussed extensively in Daly’s thesis, with the nonlinear implementation referred to as the

’unit-and-a-half delay’ model by Daly [9]. The frequency responses obtained in this iteration of

the nonlinear implementation will be briefly explored as such is the same model implemented

by Daly and Huovilainen before. An example impulse response of the VCF, given fc = 440 Hz

and the original impulse of magnitude unity, is shown in Fig. 4.1.

Figure 4.1: The impulse response of the Moog VCF.

4.1.1 VCF frequency response

The interesting characteristics of the analogue Moog VCF come from its nonlinear phase distor-

tions, and therefore analysis of the VCF’s frequency response is crucial to comparing how the

implemented digital model holds up to its analogue counterpart.

The frequency response of the VCF, given varying fc and constant feedback gain k = 3.99,

41

CHAPTER 4. RESULTS AND DISCUSSIONS 42

is shown in Fig. 4.2. The magnitude response profile closely resemble the analogue equivalent

model until fc ≥ 10 kHz where the resonant peaks become mismatched from fc. In conjunction,

the phase responses for fc < 10 kHz bore similarities to their analogue counterparts (albeit

with increasing divergents for increasing fc), after which the phase response became wholly

inaccurate.

Figure 4.2: A comparison between the implemented nonlinear model of the Moog VCF and
the analogue frequency responses as discussed in [7]. The magnitude and phase responses of the
nonlinear model are an improvement over the single-delay model as described in Eqn. 3.14, however
magnitude and phase responses become increasingly distorted at higher frequencies. Unlike the
linear model, the phase response at 180◦ is not firmly flat but instead curved, signifying the

nonlinearities in the system.

4.2 Impulse response of the make-up gain stage

The impulse response of the make-up gain stage was obtained to evaluate whether the gain stage

would, per the stated design requirements, preserve the frequency contents of the passband, while

mitigating any side-effects of frequencies outside the passband.

CHAPTER 4. RESULTS AND DISCUSSIONS 43

To do this, the impulse response of the prepending VCF at fc = 440 Hz, as shown in Fig. 4.1,

was passed as the input to the make-up gain stage, while the original impulse was delayed and

passed as the reference signal. The resulting impulse responses for the gain stage, using both

the SMA (of 400 ms window) and EMA (with τ = 125 ms) algorithms, are shown in Fig. 4.3.

Figure 4.3: Outputs of the gain stage using both SMA (equivalent to RMS) and EMA algorithms
were similar to each other. Both algorithms attempted to amplify and restore the volume of the
filtered signal such that their loudnesses are as close to the original impulse (of magnitude unity)

as possible.

It was determined that the gain stage had not only restored the waveform envelope to resemble

that of the original impulse, due to restoring the loudness, but also ensured that no rapid phase

jumps occured in the output waveform.

4.2.1 Frequency response of make-up gain output

To verify whether the make-up gain successfully retained the passband characteristics while

minimising the stopband’s contributions, the frequency response of the gain-applied output can

be examined as shown in Fig. 4.4.

Magnitude response

Frequencies of the gain-applied output within the VCF passband (i.e. f ≤ fc), including the

resonance, remained intact, and the resonant frequency of the gain-applied output was the same

as that of the filtered signal input. The only distinct differences observed between the filtered

signal and the gain-applied output are:

� The magnitude of the passband frequencies where f ≤ fc were amplified to levels greater

than the original gain-applied signal.

CHAPTER 4. RESULTS AND DISCUSSIONS 44

Figure 4.4: Outputs of the gain stage using both SMA (equivalent to RMS) and EMA algorithms
show similar frequency contents both in magnitude and phase. Both the filtered input signal and
the gain-applied output signal displayed resonance at 443 Hz (note that this discrepancy between
resonance and fc was due to the digital VCF model, and thus the resonance was carried over to
the make-up gain stage). The upper subplot shows the resonance of the SMA and EMA schemes,
whereas the lower subplot shows the inflection points of the SMA and EMA phase responses.

� The ratio between magnitudes of bandpass frequencies and the resonant peak were de-

creased, i.e. the slope of the passband magnitude rising to the peak resonance in the was

less steep than that of the filtered signal.

However, frequencies outside the passband (i.e. f > fc) showed greater distinctions. The

frequency slope beyond the output passband were not only amplified but also slightly distorted,

and the dB/decade slope was also reduced.

Both the SMA (equivalent to RMS) and EMA methods exhibited near-identical responses with

these distortive features, as shown in the example frequency response from Fig. 4.4.

CHAPTER 4. RESULTS AND DISCUSSIONS 45

Phase response

The phase response of the gain-applied output exhibited arguably more distortions than its

magnitude response as shown in Fig. 4.4. For f ≤ fc the phase response remained roughly the

same, although at higher frequencies the rate of phase response showed higher degrees/decade

than that of the filtered input signal.

At f > fc the phase response became wholly deviant as the phase no longer remained decreasing.

Instead the phase response buckled up and incremented with higher frequencies, all without

falling below −180◦. The phase would eventually converge back to 0◦ in the same way as the

filtered input signal at f = fc
2 .

4.2.2 Equivalent continuous sound levels of gain-stage outputs

Signal loudness can be quantified into the equivalent continous sound level Leq, or Lτ given time

weighting scheme used. The input impulse, VCF impulse response, and make-up gain-applied

signals were passed through the EMA filter to obtain their Lτ envelopes as described in Eqn. 3.9.

Figure 4.5: The SMA (equivalent to RMS) and EMA algorithms provided similar make-up gains
to the VCF output with very small discrepancies (as shown in the smaller plot). Given an impulse
input and the VCF response, the algorithms over-applied the necessary make-up gains and resulted

in over-amplification over time.

The resulting gain-applied loudnesses shown in Fig. 4.5 showed that both the SMA and EMA

schemes applied similar make-up gains to the VCF output (the differences are shown in the

smaller plot). However, the applied gain resulted in over-amplification in the output loudness

and resulted in a a percentage error (i.e. the loudness of the output relative to input, in linear

scale) of 405.495%. It was inferred that the make-up gain stage had difficulties predicting the

long-term loudness of a brief non-zero signal (i.e. an impulse trailed by silence), although the

CHAPTER 4. RESULTS AND DISCUSSIONS 46

instantaneous loudness at the impulse (i.e. when the impulse was applied) was restored as shown

in Fig. 4.6, and eventually decayed at the same logarithmic rate.

Figure 4.6: The make-up gain outputs of the SMA and EMA schemes directly inherited the
loudness of the VCF output, shown in Fig. 4.7, and slowly diverged from each other over time.
The sub-plot shows that, at the time of impulse, the make-up gain did successfully restore the
signal loudness to the instantaneous loudness of the reference (original input) impulse signal.

Fig. 4.7 showed that the SMA and EMA gains’ overshoots were due to the VCF output’s loudness

envelope not being instantaneously loud, peaking at 46.3 ms; this was due to the output of the

VCF where its impulse response waveform did not instantaneously peak but at 46.3 ms while

the make-up gain estimations were not able to account for future times (due to the real-time

causal requirements set in Section 3.1). As such, the gain stage depended on the output signal

of any preceding blocks to reliably restore the signal loudness to that of the reference signal.

Figure 4.7: The VCF output resulted in a loudness envelope ripple causing ripples in make-up
gain calculations as shown in Fig. 4.5 and Fig. 4.6.

CHAPTER 4. RESULTS AND DISCUSSIONS 47

4.3 Elapsed time

One of the discussed metrics for evaluating the make-up gain stage was to ensure that the

algorithm does not take a longer time to process the signal than the signal duration itself. To

calculate the time required for the SMA and EMA algorithms to compute the loudness of a

1-second signal (i.e. the previously discussed impulse and VCF output signals), a Monte Carlo

simulation of 1000 runs was used.

It was found that the SMA algorithm took 7.535 seconds on average to process an impulse signal

of 1 s, whereas the EMA algorithm took only 951.8 ms. It was therefore evaluated that the EMA

is faster in processing the make-up gain compared to the SMA.

4.4 Testing system with other audio data

While brief non-zero signals resulted in some gain over-predictions as shown with impulse’s

results, the make-up gain stage had less problems, both in terms of accuracy and speed, in

obtaining the make-up gain to match continuously-loud signals.

For brevity, only the EMA output to the make-up gain stage will be shown/discussed (unless

stated otherwise). As the SMA output has very similar values to the EMA (assuming sufficient

window length), per previous discussions, and its values can therefore be the assumed to be the

same as that of the EMA.

4.4.1 Square wave of unit amplitude

Inputting a square wave of frequency f = 220 Hz and amplitude of unity into the VCF-gain sys-

tem returned the outputs shown in Fig. 4.8. The peak amplitudes of the gain-stage output were

greater than that of the square wave (at 1.68 arb. units), with an overshoot of 1.99 arb. units

at the start.

However, as shown in the subplot of Fig. 4.9, the make-up gain successfully restored the loudness

of the VCF-filtered square wave with a discrepancy of 0.4 LKFS due to over-estimation of

loudness by the make-up gain module. While the same issue persisted from the impulse respose

loudness discussed in Fig. 4.5, the loudness discrepancy of such a lengthy signal (and not a brief

impulse) allowed the make-up gain to consider the entirety of both the reference input and VCF

output signals.

On average (using a Monte Carlo simulation of 1000 runs), the EMA make-up gain algorithm

CHAPTER 4. RESULTS AND DISCUSSIONS 48

Figure 4.8: A reference square wave of 220 Hz (yellow) was passed to the VCF at fc = 440 Hz.
Its results (blue) were then passed to the gain stage to produce the amplified output (orange).

took 0.9295 seconds, while the SMA algorithm took 11.543 seconds to process 1 second of the

VCF output (with a square wave input). It was therefore shown again that the EMA has superior

speed compared to the SMA gain scheme.

4.4.2 Whitacre’s "Water Night" composition

To simulate a realistic application of the system, the choral composition "Water Night" by

composer Eric Whitacre [37] was used to test real-time functionalities of the VCF and the

make-up gain stages due to the following:

� The piece was composed to employ rich (i.e. many) overtones and harmonics. This allowed

the VCF to filter as many overtones as required by the user (in this test, at fc = 440 Hz, or

at A4), and provided the opportunity to observe the gain stage’s performance in handling

wide ranges of dynamics1 (i.e. musical loudnesses).
1Composers refer to the term ’dynamics’ as the variations of loudness that the musician was to play the musical

notes or passages at. It is not immediately quantifiable, and is ultimately dependent on the interpretation of the
performer and the musical context.

CHAPTER 4. RESULTS AND DISCUSSIONS 49

Figure 4.9: The EMA loudness Lτ,K calculations show very minor discrepancies between ref-
erence input and gain-applied output, in contrast to Fig. 4.5. The make-up gain over-restored

0.4 LKFS of loudness to the VCF output.

� The duration of the piece is 5:47 minutes, and is a standard-length piece of music in

streaming services. This allowed us to measure the time taken to process the full audio,

thereby evaluating the make-up gain’s algorithms in real-time and simulate a streaming

platform.

The output of this real-time processing can be observed in Fig. 4.10, while its loudness plots can

be found in Fig. 4.9. As shown, the make-up gain has little issues calculating the necessary make-

up gain to match the VCF-filtered signal loudness to the original recording’s. This confirmed the

postulate, discussed regarding the square wave, that the algorithm has issues with calculating

gain of very brief pulses, but has little difficulty processing long-running loudnesses.

It was also found that the algorithm took 302.7748 seconds to process the musical piece of

327.4533 seconds, showing that the algorithm runtime is 7.54% faster than the duration of the

piece. This infers that the algorithm, provided the streaming samples were buffered, could

operate in real-time processing.

4.5 Optimising the make-up gain system

4.5.1 Obtaining make-up gain in linear scale

The error/gain calculation of the algorithm from Fig. 3.11 can be mathematically simplified,

shown in Fig. 4.12, by directly dividing the reference loudness li[n] with the VCF-filtered lf [n]

CHAPTER 4. RESULTS AND DISCUSSIONS 50

Figure 4.10: The original recording (yellow) was streamed (i.e. passed sample by sample) to the
VCF at fc = 440 Hz, where its immediate result (blue) was passed to the gain stage to produce

the amplified output (orange), simulating the real-time filtering and make-up gain pipeline.

to obtain the make-up gain G[n]:

G[n] =
li[n]

lf [n]
(4.1)

The requirements of using logarithm-antilog converter blocks (and therefore their associated

delays) became obsolete as a result, however this traded for a lower dynamic range of floating

point values due to limited floating point storage in software implementation [19]. In some cir-

cumstances, the lack of precision resulted in catastrophic gain calculations, be it over-predicting

or under-predicting, as shown when passing the same square wave from Fig. 4.8 resulted in

erroneous gain calculations shown in Fig. 4.13.

4.5.2 Optimising the algorithm within logarithmic scale

An alternative optimisation technique involved exploiting the fact that the loudnesses and gains

were to be converted between linear and logarithmic scales. Considering RMS calculations,

CHAPTER 4. RESULTS AND DISCUSSIONS 51

Figure 4.11: The real-time EMA loudness Lτ,K calculations show closely matching dynamics
with very minor discrepancies between reference input (i.e. the original recording) and the gain-

applied output.

conversions from Eqn. 3.11 was simplified to:

err[n] = Li[n]− Lf [n] = 2 log10

√
li[n]

lf [n]
≡ log10

(
li[n]

lf [n]

)
G[n] = 10

err[n]
2

(4.2)

where the factor 10 was omitted from the logarithmic conversions. This removed two multipli-

cation processes from the gain-obtaining algorithm while adhering to the structure presented

in Fig. 3.11. Processing an impulse (of the same variant shown in Fig. 4.3) showed that the

improved model sped up the make-up gain stage by 27.76%, taking only 0.7215 seconds (on

average with a Monte Carlo simulation of 1000 runs) to process a 1-second impulse. Similarly,

a 1-second square wave (from Fig. 4.8) took 0.7991 seconds, yielding a 20.09% speed-up.

4.6 Implementing the system as an audio plugin

Using MATLAB’s Audio Toolbox [11] the VST plugin was generated. The layout of the plugin

is shown in Fig. 3.21. Such audio plugin was tested on multiple DAWs including REAPER and

Audacity, and successfully filtered incoming signals while restoring their loudnesses, confirming

the real-time functionalities of the system.

CHAPTER 4. RESULTS AND DISCUSSIONS 52

Figure 4.12: As subtraction in logarithmic scale equates to division in linear scale, obtaining
G[n] was simplified by directly dividing li[n] by lf [n], similar to obtaining the gain with Stevens’s
power law from Fig. 3.2. The amount of delays inferred would be reduced, however the dynamic

range of the loudness obtained would be reduced.

Figure 4.13: Obtaining the make-up gain using the method provided in Eqn. 4.1 resulted in
numerical issues that, while the equations are mathematically correct, do not account for precision

loss in numbers, and therefore led to massive loudness over-amplifications.

5 | Conclusions

5.1 Conclusions drawn from results

A novel method of amplifying the loudness of a filter’s output, in this case the Moog nonlinear

digital low-pass VCF as derived by Huovilainen [8], has been successfully implemented and

shown to operate in real-time processing. By using the SMA and EMA filters to obtain the

loudness at the current sample in the streaming audio, a reliable make-up gain was successfuly

obtained.

Implementing the RMS scheme as a recursive SMA filter greatly reduced the memory required

to process a signal. Same benefits were found with the EMA scheme which required even less

memory. Both schemes were superior to the original RMS schemes in terms of speed and memory

usage, although ultimately the EMA scheme triumpthed due to its lower processing time. The

entirety of the system was successfully implemented as a VST audio plugin.

The optimisation scheme presented in Eqn. 4.2 improved the processing speed by about 20% in

comparison to the original scheme in Eqn. 3.11, and was proven to successfully process incoming

audio in an audio-streaming simulation.

By implementing the K-weighting filters to process incoming audio in a streaming-esque manner

(i.e. sample by sample), the filtering speed was greatly improved as no longer was it required to

process individual signal buffers (which would reduce the accuracy of the K-weighting over the

entire signal), but instead only requiring the current signal sample and previous delays within

the filter.

However, the make-up gain algorithm has issues with obtaining loudnesses of brief pulse signals

(i.e. an impulse), where its loudness perceptions by humans would differ greatly from that

obtained by the program. The algorithm itself is also not fully optimised as a number of delay

blocks persisted. The proposed loudness-division optimising scheme presented in Eqn. 4.1 has

53

CHAPTER 5. CONCLUSIONS 54

issues with numerical precision that resulted in an overly-large gain being obtained.

Additionally, the make-up gain stage was implemented for the Moog VCF and no other filters. Its

nonlinear model as presented by Huovilainen [8] still has stability issues in increasingly higher

frequencies, and accuracies of resonance frequencies remained an issue in the digital models

observed.

A hardware-based implementation was also not realised due to hardware restrictions. Since this

project was undertaken during the Covid-19 pandemic, access to hardware equipments were not

made possible, and instead a software-based implementation was instead conceived on MATLAB.

Hardware-based implementation (i.e. on FPGAs or DSP chips) could allow many processes used

in this project to be run in parallel or pipelined, in particular the K-weighting and SMA/EMA

algorithms for the reference input and VCF filter output. This would considerably improve the

currently-fast speed and guarantee real-time implementations as, with reference to Fig. 3.15,

this would nullify K +A+ L delays from the make-up gain pipeline.

The ITU-R BS.1770 and EBU’s recommendations also stated other modules along the K-

weighting pipeline that were not implemented in this project, including noise gating and the

impulse time constant. The current algorithm only considers left-right stereo audio channels,

however other channels such as the centre, left-surround, and right-surround channels exist.

5.2 Recommended further works

Potential further studies are listed as follows:

� Implement other types of filters that could be implemented in real-time in place of the

Moog VCF stage.

� Investigate Huovilainen’s and Daly’s comments regarding their digital VCF models and

research their recommended further works.

� Improve on the current make-up gain system with other loudness calculation methods as

discussed in Ward’s thesis [19].

� Implement the VCF and make-up gain system on hardware-based platforms, and convert

some processes such that they are run in parallel or pipelined.

� Investigate whether feedback AGCs (or combined feedback-feedforward) can be imple-

mented, such that it could help with gain stability (i.e. in floating-point errors or issues

CHAPTER 5. CONCLUSIONS 55

with the impulse loudness).

� Given so, convert the hardware-based implementation into a DIY synthesiser module (i.e.

compatible with the Eurorack modular synthesisers).

� If implemented on a modular synthesiser block, investigate whether the make-up gain can

be its own module, and whether the input and reference signals can be input to the module

externally.

� Devise new means of obtaining the make-up gain such that precision loss is minimised.

� Investigate the ITU and EBU’s noise gating techniques, and discuss how its additions

improved loudness measures, or otherwise.

� Implement the algorithm and make necessary modifications to accommodate for all chan-

nels as discussed by the ITU-R BS.1770 [20].

� Adjust the audio plugin such that it allows all sampling frequencies and any number of

channels.

� Implement the entirety of this project in C++, and port the algorithms as a C++-based

plugin (i.e. with the JUCE framework).

A | Appendix

Written scripts/codes and software used

All listed scripts and test audio files are uploaded to the project repository on GitHub:

github.com/jpiamjariyakul/makeUpGainStage

Algorithms & Scripts Source Usage & Modifications
main.m MATLAB Main simulation file to obtain results of the VCF from

f_runVcf.m, and make-up gain stages from f_makeup_ema.m
and f_makeup_sma.m, and plot the time and frequency re-
sponses (the latter using f_getFrqcResp.m).

f_vcf_nonlinear.m MATLAB Student-written implementation of nonlinear Moog VCF.
Based on works from [8], difference equations from [9].

f_runVcf.m MATLAB Student-written entry point and input buffer generator for
f_vcf_nonlinear.m.

f_getCoef_rlb.m MATLAB Student-written implementation of method from [19] to gen-
erate RLB filter [6] coefficients for arbitrary frequencies.

f_getCoef_preK.m MATLAB Student-written implementation of method from [19] to gen-
erate the pre-K filter [6] coefficients for arbitrary frequencies.

f_makeup_ema.m MATLAB Student’s own algorithm to generate make-up gain for a
signal given another reference signal. Uses EMA loudness-
calculating algorithms described in [19].

f_makeup_sma.m MATLAB Student’s own algorithm to generate make-up gain for a sig-
nal given another reference signal. Adapts the RMS formulas
described in [5] into the SMA algorithm.

f_1dFilter.m MATLAB Student’s implementation of the digital biquad fil-
ter described in [19], uses coefficients obtained from
f_getCoef_preK.m and f_getCoef_rlb.m.

vst_fullSystem.m MATLAB Student’s own audio plugin code. Combines the implemented
EMA make-up gain and VCF stages from f_makeup_ema.m
and f_vcf_nonlinear.m.

Table A.1: Table of scripts written for the project

Software Source Usage
MATLAB MathWorks Main simulation and computation platform used in project.

Used for generating results from simulations and experiments.
Platform where Audio Toolbox is used.

Audio Toolbox MATLAB Used for generating the project’s VST plugin.
diagrams.net diagrams.net Platform for drawing block diagrams for the thesis.

Table A.2: Table of software packages used in the project

56

https://github.com/jpiamjariyakul/makeUpGainStage
https://app.diagrams.net

Bibliography

[1] R. A. Moog, “A voltage-controlled low-pass high-pass filter for audio signal processing,”

in Audio Engineering Society Convention 17, Audio Engineering Society, 1965.

[2] A. P. Kefauver and D. Patschke, Fundamentals of digital audio. AR Editions, Inc., 2007,

vol. 22.

[3] H. Fletcher and W. A. Munson, “Loudness, its definition, measurement and calculation,”

Bell System Technical Journal, vol. 12, no. 4, pp. 377–430, 1933.

[4] S. S. Stevens, Psychophysics: Introduction to its perceptual, neural and social prospects.

Routledge, 1975.

[5] G. A. Soulodre, “Evaluation of objective loudness meters,” in Audio Engineering Society

Convention 116, Audio Engineering Society, 2004.

[6] International Telecommunications Union, “ITU-R BS.1770 Algorithms to measure audio

programme loudness and true-peak audio level,” 2006. [Online]. Available: https://www.

itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-1-200709-S!!PDF-E.pdf.

[7] T. Stilson and J. Smith, “Analyzing the Moog VCF with considerations for digital imple-

mentation,” in Proceedings of the 1996 International Computer Music Conference, Hong

Kong, Computer Music Association, 1996.

[8] A. Huovilainen, “Non-linear digital implementation of the Moog ladder filter,” in Proceed-

ings of the International Conference on Digital Audio Effects (DAFx-04), 2004.

[9] P. Daly, “A comparison of virtual analogue Moog VCF models,” Master’s thesis, Univ. of

Edinburgh, Edinburgh, UK, Aug, 2012.

[10] MathWorks, Inc., MATLAB Release 2021a. [Online]. Available: https://mathworks.com/

products/matlab.html.

[11] ——, Audio Toolbox Release 2021a. [Online]. Available: https://mathworks.com/products/

audio.html.

57

https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-1-200709-S!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-1-200709-S!!PDF-E.pdf
https://mathworks.com/products/matlab.html
https://mathworks.com/products/matlab.html
https://mathworks.com/products/audio.html
https://mathworks.com/products/audio.html

BIBLIOGRAPHY 58

[12] P. Hill, Audio and speech processing with MATLAB. CRC Press, 2018.

[13] D. M. Randel, The Harvard Dictionary of Music. Harvard University Press, 2003.

[14] R. G. Lyons, Understanding digital signal processing, 3rd Edition. Pearson Education,

2004.

[15] “Home recording studio solutions for everyday musicians,” E-Home Recording Studio, Ac-

cessed: 03-04-2021. [Online]. Available: https://ehomerecordingstudio.com/.

[16] K. Kosbar, “Loudness,” EE 3430 - Digital Communications, Accessed: 03-04-2021. [Online].

Available: https://web.mst.edu/~kosbar/ee3430/ff/fourier/notes_loudness.html.

[17] “Acoustics - normal equal-loudness-level contours,” International Organization for Stan-

dardization, Geneva, Switzerland, Standard, 2003.

[18] American Engineering and Industrial Standards, American tentative standards for sound

level meters for measurement of noise and other sounds. American Standards Association,

1936.

[19] D. Ward, “Applications of loudness models in audio engineering,” Ph.D. dissertation, Birm-

ingham City University, 2017.

[20] International Telecommunications Union, “ITU-R BS.1770 Algorithms to measure audio

programme loudness and true-peak audio level, 4th revision,” 2015. [Online]. Available:

https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-4-201510-I!!PDF-

E.pdf.

[21] European Broadcast Union, “EBU Tech 3341 Loudness metering: ’EBU mode’ metering

to supplement loudness normal-isation in accordance with EBU R 128,” 2011. [Online].

Available: https://tech.ebu.ch/docs/tech/tech3341.pdf.

[22] E. Skovenborg and S. H. Nielsen, “Evaluation of different loudness models with music

and speech material,” in Audio Engineering Society Convention 117, Audio Engineering

Society, 2004.

[23] J. P. A. Pérez, S. C. Pueyo, and B. C. López, Automatic gain control. Springer, 2011.

[24] THAT Corporation, “The Mathematics of Log-Based Dynamic Processors,” Application

Note 101A, 2009.

[25] J. Palance, The Minimoog synthesiser operation manual, Accessed: 24-03-2021. [Online].

Available: www.fantasyjackpalance.com/fjp/sound/synth/synthdata/16- moog-

minimoog.html.

[26] T. E. Stinchcombe, “Analysis of the Moog transistor ladder and derivative filters,” 2008.

https://ehomerecordingstudio.com/
https://web.mst.edu/~kosbar/ee3430/ff/fourier/notes_loudness.html
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-4-201510-I!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-4-201510-I!!PDF-E.pdf
https://tech.ebu.ch/docs/tech/tech3341.pdf
www.fantasyjackpalance.com/fjp/sound/synth/synthdata/16-moog-minimoog.html
www.fantasyjackpalance.com/fjp/sound/synth/synthdata/16-moog-minimoog.html

BIBLIOGRAPHY 59

[27] A. S. Sedra and K. C. Smith, Microelectronic circuits. New York: Oxford University Press,

1998.

[28] B. A. Hutchins, Musical Engineer’s Handbook: Musical Engineering for Electronic Music.

Electronotes, 1975.

[29] D. Rossum, “Making digital filters sound "analog",” in Proceedings of 1992 ICMC, 1992.

[30] C. v. Wensem, “How to make a track sound ’warm’ and 5 other confusing audio terms,

explained,” Sonicbids Blog, Accessed: 29-03-2021. [Online]. Available: https://blog.

sonicbids.com/how-to-make-a-track-sound-warm-and-5-other-confusing-audio-

terms.

[31] G. James, Modern Engineering Mathematics 5th Edition. Pearson Prentice Hall, 2008.

[32] J. O. Smith, Impulse Invariant Method, Accessed: 30-03-2021. [Online]. Available: https:

//ccrma.stanford.edu/~jos/pasp/Impulse_Invariant_Method.html.

[33] Steinberg Media Technologies GmbH, Technologies, Accessed: 16-04-2021. [Online]. Avail-

able: https://www.steinberg.net/en/company/technologies.html.

[34] VST SDK 3.6.7 released, Accessed: 22-04-2021. [Online]. Available: https://www.steinberg.

net/en/newsandevents/news/newsdetail/article/vst-sdk-367-released-4165.

html.

[35] J. Watkinson, The Art of Digital Audio. Taylor & Francis, 2001.

[36] I. Mateljan, “Arta,” User Manual, Program for Impulse Response Measurement and Real

Time Analysis of Spectrum and Frequency Response, Version 1.9.1, vol. 1, no. 1, 2019.

[37] E. Whitacre, Water Night, Audio media, Accessed: 26-04-2021. [Online]. Available: https:

//youtu.be/1DQQmtNuXUU.

https://blog.sonicbids.com/how-to-make-a-track-sound-warm-and-5-other-confusing-audio-terms
https://blog.sonicbids.com/how-to-make-a-track-sound-warm-and-5-other-confusing-audio-terms
https://blog.sonicbids.com/how-to-make-a-track-sound-warm-and-5-other-confusing-audio-terms
https://ccrma.stanford.edu/~jos/pasp/Impulse_Invariant_Method.html
https://ccrma.stanford.edu/~jos/pasp/Impulse_Invariant_Method.html
https://www.steinberg.net/en/company/technologies.html
https://www.steinberg.net/en/newsandevents/news/newsdetail/article/vst-sdk-367-released-4165.html
https://www.steinberg.net/en/newsandevents/news/newsdetail/article/vst-sdk-367-released-4165.html
https://www.steinberg.net/en/newsandevents/news/newsdetail/article/vst-sdk-367-released-4165.html
https://youtu.be/1DQQmtNuXUU
https://youtu.be/1DQQmtNuXUU

	Acronyms
	Introduction
	Background
	Motivation
	Objectives and specifications
	Software overview
	Limitations
	Contributions

	Literature review
	Quantifying loudness
	Signal energy/power and root mean square
	Stevens's power law

	Frequency weighting techniques
	Fletcher-Munson Equal Loudness Curves
	A-weighting
	Measuring the equivalent continuous sound level
	Soulodre's Revised low-frequency B-curve weighting
	K-weighting (ITU-R BS.1770)
	Other techniques and developments

	Calculating second-order filter coefficients
	Automatic gain control
	Analysis of the analogue Moog transistor ladder VCF
	Huovilainen's analysis of the differential pair
	Differential equation for a single stage

	Implementation of the discrete-time VCF
	Stilson and Smith's linear VCF analysis
	Stinchcombe's pole-zero analysis of the linear VCF
	Huovilainen's implementation of the nonlinear VCF
	Daly's dimensionless difference equation variants

	Virtual Studio Technology (VST) plugins

	Design and implementation
	Design parameters and assumptions
	Choosing the programming language

	Signal energy as a loudness metric
	Psychoacoustic compensation with Stevens's power law
	Designing a moving window buffer

	Generating gain with RMS values
	Implementing the RMS algorithm as a simple moving average filter

	Obtaining loudness with the exponential moving average
	Generating gain with SMA/EMA filters
	Calculating K-filter coefficients at 44.1 kHz
	Constructing the K-filter
	Implementing the RLB filter
	Implementing the pre-K weighting filter
	Applying K-weighting to gain generation

	Implementing the nonlinear Moog VCF
	Combining the VCF and make-up gain stages together
	Quantitative metrics to evaluate make-up gain
	Test data for benchmarking the system

	VST plugin implementation

	Results and discussions
	VCF impulse response
	VCF frequency response

	Impulse response of the make-up gain stage
	Frequency response of make-up gain output
	Equivalent continuous sound levels of gain-stage outputs

	Elapsed time
	Testing system with other audio data
	Square wave of unit amplitude
	Whitacre's "Water Night" composition

	Optimising the make-up gain system
	Obtaining make-up gain in linear scale
	Optimising the algorithm within logarithmic scale

	Implementing the system as an audio plugin

	Conclusions
	Conclusions drawn from results
	Recommended further works

	Appendix
	Bibliography

